Typing mechanismsin softwar e engineering environments

Kwon, In Sup _ _
ProQuest Dissertations and Theses; 1989; ProQuest Dissertations & Theses Global

INFORMATION TO USERS

The most advanced technology has been used to photo-
graph and reproduce this manuscript from the microfilm
master. UMI films the text directly from the original or
copy submitted. Thus, some thesis and dissertation copies
are in typewriter face, while others may be from any type
of computer printer.

The quality of this reproduction is dependent upon the
quality of the copy submitted. Broken or indistinct print,
colored or poor quality illustrations and photographs,
print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a
complete manuscript and there are missing pages, these
will be noted. Also, if unauthorized copyright material
had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are re-
produced by sectioning the original, beginning at the

upper left-hand corner and continuing from left to right in
equal sections with small overlaps. Each original is also
photographed in one exposure and is included in reduced
form at the back of the book. These are also available as
one exposure on a standard 35mm slide or as a 17" x 23"
black and white photographic print for an additional
charge.

Photographs included in the original manuscript have
been reproduced xerographically in this copy. Higher
quality 6” x 9" black and white photographic prints are
available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Bell & Howell Information Company

300 North Zeeb Road, Ann Arbor, Ml 43106-1346 USA
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

er. Further reproduction prohibited without permissionyaw\w.manaraa.com

Order Number 9005992

Typing mechanisms in software engineering environments

Kwon, In Sup, Ph.D.
Arizona State University, 1989

U-M1

300 N. Zeeb Rd.
Ann Arbor, MI 48106

er. Further reproduction prohibited without permissionyaw\w.manaraa.com

er. Further reproduction prohibited without permissionyaw\w.manaraa.com

TYPING MECHANISMS IN
SOFTWARE ENGINEERING ENVIRONMENTS

by
In Sup Kwon

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy

ARIZONA STATE UNIVERSITY
December 1989

er. Further reproduction prohibited without permissionyaw\w.manaraa.com

TYPING MECHANISMS IN
SOFTWARE ENGINEERING ENVIRONMENTS

by
In Sup Kwon

has been approved
August 1989

APPROVED:

.

ey
’ﬁ// %{q ; / V,)/ ,Chairperson
Lt W”Z,t e

—%%

Supervisory Committee

ACCEPTED:

(Gaud

Department Chairperson

Dean, Graduate College

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

ABSTRACT

In the emerging concept of the software engineering environment, serious
problems with the integration of software tools and data in the software
development lifecycle have been revealed. The more automated software
tools are required to assist the software development, the more complex
integration on the tool data.

There are currently several ongoing research efforts attempting to
solve these problems. Despite many research topics available, virtually no
research deals with the typing of the tool data to aid integration of various
software tools. Several existing typing theories try to formalize the various
kinds of data manipulated in a programming language. However, applying a
typing mechanism to software engineering environment data allows more
detailed description of information communicated among tools.

This research presents the problems in building the software
engineering environment, its software architecture, and typing mechanism
for software tool data. The entity-relation model together with an object-
oriented paradigm is used to design the software tools. Analysis of the
proposed system reveals the design quality and productivity improvements
for software development. The explicit polymorphic mechanism is used as an
underlying formalism. The typed software engineering environment system
is a self-evolving system encompassing the creation and management of

types for tool data in software engineering environments.

iti

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanw.manaraa.com

TABLE OF CONTENTS

Page

1 INTRODUCTION iiiiiiiiiiieaiianneienaieeaennannn. 1
1.1 Problems in Software Development 1

1.2 Research Objectives and Approach 3

13 Organization of Disserfaioncovevvunun... 4

2 SOFTWARE ENGINEERING ENVIRONMENT 6
2.1 Definition of Software Engineering Environment 6

22 Classifying a Software Engineering Environment 8

23 Related Works c.iiiiiiiiiiiiiiiii i, 13

24 General Architecture of Software Engineering Environment 17
2.5 Required Characteristics of a Software Engineering

Environmentciiiiiiiiiiiiiiii i 28
26 Dynamic and Static Features of Software Tool Data 30
3 OBJECT-ORIENTED DEVELOPMENT PARADIGM 32
3.1 Objects, Method, and Messagesceveuenvnen.... 32
3.2 Classes, Instances, and Inheritancecvun..... 34
3.3 Data Abstraction and Information Hiding 35
34 Persistence ...l 36
3.5 Language Supports and Strong Typing 37
3.6 Object-Oriented Features in Software Engineering
Environment Tool Dataccovvviinnnnnnn..... 38
4 EXPLICIT POLYMORPHIC TYPESFORTOOL DATA 40
4.1 Explicit Polymorphic Typesc.c.covuviiunnnnn.n.. 40
42 Environment Type Constructor 43
4.3 Environment Type Instancescoeoen.n.. 48
44 CAIS: A Building Block for an Environment Type System .. 52
45 Example : Software Testing Environment 60

5 DESIGN OF ENVIRONMENT TYPE MANAGEMENT SYSTEM FOR
SOFTWARE ENGINEERING ENVIRONMENT 68
5.1 System Architectureciiiiiiiiiiiiiii.... 68

s s s - vz O ST T e s An T bt b o ge a1n e e h e L aeeamm o iveeem % <1 amme osvor, rovn = e oo e+

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

52 Design of Environment Type Management System 73
5.3 Environment Type Definition Processor (ETDP) 83
54 Tool Compilercoiiiiniiiiiiiiia, 84
5.5 Environment Type Library Manager (ETLM) 92
5.6 Tool Data Manager (TDM)ccouuunennn.... 101

6 ANALYSIS OF THE TYPED SOFTWARE ENGINEERING

ENVIRONMENT ...ttt 106
6.1 Use Analysis : User's Viewcccovvenen..... 107
62 Implementation Analysis : Type System Builder's View 114
6.3 Software Quality Improvement 120
64 Improvement in Productivity 124
7 CONCLUSION ittt 129
71 Contributions i 130
72 Further Research............c.coooiiiiiiniiiiinnnnii., 131
REFERENCES ... i e e 132
APPENDIX
A Environment Type Definitions for the Software
Testing Environmentcooiieunninnnnn.... 142
B Metric Formulation for the Reusability 147
v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

1. INTRODUCTION
There has been significant development recently in computer technology,
both in hardware and software. More sophisticated and powerful systems are
now available for a wide range of business and engineering applications.
Software engineering serves a major role in developing such systems by
providing the basis for a good scientific methodology from requirements
engineering through maintenance of software systems.
1.1 Problems in Software Development
Over the past 20 years, software developers have built tools for software
development as a way to support better production of software systems.
However, the practices in software development faced serious problems with
demands for increased functionality, reliability, and user friendliness of
software systems. The software systems to be developed to fulfill such
demands require more complex structures. The typical problems can be
summarized as:
1) the object size of the software system is rapidly increasing,
2) the complexity and increased object size of software system requires
large-scale development activities,
3) the resulting software does not meet the requirements or delivery
deadline,
4) the resulting software is neither reliable nor efficient,
5) the documentation is poor, and
6) maintenance costs of delivered systems are ever increasing.
To overcome such problems, new paradigms for software development
are introduced. These paradigms include approaches such as JSD (Jackson

System Development), software requirement engineering, specification

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanw.manaraa.com

2
technology, modularity, information hiding, project management, cost
estimation, and so on.

The other important trend is that more software developers are now
dependent on automated tools for project management, program generation,
prototyping, or report generation [Rich and Waters 1988]. In the presence of a
wide variety of tools, the problem of integrating those tools still remains
difficult. Heterogeneous tools integrated in a single software environment
usually result in a less reliable environment. Also, most of the currently
available tools only support a narrow range of the software life-cycle.

When a number of specialized tools run together, inter-application
communications are usually processed by operating system level services
with a limited set of predefined data types such as files. However, this method
does not guarantee an efficient management of highly specialized,
complicated software engineering environment data, which are becoming
more and more abundant. It further ignores relationships between data.

The concept of a software engineering environment emerged in the
mid-1970s to provide more cost-effective and rapid development of reliable
software systems. The initial approach with software engineering
environments was to integrate those available software engineering
techniques and experiences with appropriate methods and tools in a
synergistic manner. The common purpose of building an environment is to
support the efforts of individuals, groups, and project teams over the entire
software lifecycle. The initial attempts at developing software engineering
environments involved modern operating systems where tools are invoked
as programs and data are organized as files such as in Unix and VMS . Other

approaches include syntax-directed environments such as the Cornell

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com

3
Program Synthesizer [Teitelbaum et al. 1981] and Gandalf [Habermann and
Notkin 1986], language-based environments such as Smalltalk [Goldberg 1980;
Goldberg and Robson 1983], and object-oriented database management
systems [Kim et al. 1987; Lamsweerde et al. 1988; Penney and Stein 1987].

In defining good interfaces among tools supporting reusability,
adaptability, and necessary abstractions in software development, a more
efficient mechanism is needed to manage various types of tool interfaces
including data, programs, and even processes, with the aid of a type
management facility and appropriate compiler. Fundamental research is
needed for reliable and cost-effective methods to support well-connected
environment systems, and a well-defined typing mechanism for tool data
which will support dynamic creation as well as evolution of types.

12 Research Objectives and Approach

In a software engineering environment, software tools are used to develop
software systems. The software tools use tool data to share information
among themselves. The tool data can be in many forms such as the basic
types of integer, real, and character, the structured types of record, array, and
file, and the process types to descrize the running image of program. The tool
data are the objects and relationships among those objects that tools share. To
support independent management of such tool data, it is necessary to make
the tool data appear as autonomous objects managed by the software
engineering environment.

There has been much research to support smooth interfaces among
tools in a software engineering environment, yet research concerning typing
mechanisms for tool data is still new. The objectives the research herein

reported are to model a well-defined typing mechanism to efficiently manage

e e e e i T - FE w R oo - A W e a0 e 98 A st - =1 2 et o et %1 % e Ars e+ e s ©

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

4
tool data in a software engineering environment, to analyze the design
feasibility of such a type system, and to assess potential benefits from such a
system. The primary focus of this research deals with aspects of tool data
management for the efficient integration of tools in software development,
and the integration of application programs running in the software
development process using tool data for inter-application communications.

The research into a typing mechanism for software engineering
environments includes the design of an environment type processing
language to define environment types and manipulate those types, design of
the typing system for a software engineering environment, and analysis of
such a typing system. This environment type processing language uses
explicit polymorphic types to support the various requirements of tool data.
The design analysis of the typing system consists of use analysis for the type
system user and implementation analysis of the typing system in the software
engineering environment. The use analysis identifies the design guidelines
used in software engineering environments when tool builders use the tool
data and the tools for integration. The implementation analysis focuses on
the issues of feasibility of implementation of the typing system and the issue
of compatibility of the typed system with host languages such as Ada in the
CAIS (Common Ada Programming Supporting Environment Interface Set)
environment. The expected quality and productivity improvement using
this typed software engineering environment is finally examined.

13 Organization of Dissertation
The dissertation begins with the introduction of general software engineering
environment concepts in Chapter 2. Chapter 2 includes the definition and

classification of software engineering environments, other related research

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanw.manaraa.com

5
on this subject, the general conceptual architecture of a software engineering
environment, and required characteristics of a software engineering
environment.

The object-oriented development paradigm is discussed in Chapter 3 to
provide related background information on the research. The object-oriented
features of tool data are discussed in this chapter.

Chapter 4 describes the environment type processing language that
defines and manipulates the environment types. Environment types, tool
data, and the type constructor are discussed. Related materials about CAIS
features are presented later in Chapter 4.

Chapter 5 describes the design of the environment type management
system in detail. All the component systems of the environment type
management system and their functions are described.

The analysis of the typed software engineering environment in
Chapter 6 includes use analysis for the environment type user's view,
implementation analysis for the type system builder's view, and analysis of
expected quality and productivity improvement using this typed software
engineering environment.

The conclusion in Chapter 7 summarizes the presentation of the typed
software engineering environment. It concludes by identifying the

contributions of the research, and discussing the remaining future work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

2. THE SOFTWARE ENGINEERING ENVIRONMENT

An environment is a system consisting of hardware and software tools with a
set of interfaces among the tools to manipulate information. System
developers use this information to build software systems. The software
engineering environment includes the programming environment that
supports a coding effort as well as all activities in programming-in-the-large.
The specific purpose of the environment can be different from one user to
another, although the general goal of the environment is to enhance the
development productivity and the quality of any resulting software system.
With a powerful software engineering environment, the system developer
can increase the productivity to build the software system using software tools
and appropriate methodologies.

2.1 Definition of a Software Engineering Environment

The phrase "software engineering environment" has been used in many
ways with no consistent definition, probably because the specific purposes and
roles of a software engineering environment were not revealed clearly until
the recent development and use of software tools. However, the term
"programming support environment", which is too frequently used
interchangeably with software development environment, is defined in the
IEEE Standard Glossary of Software Engineering Terminology [IEEE 1983].
According to the IEEE definition, the programming support environment is
an integrated collection of tools that provide programming support
capabilities using simple command languages. A useful definition of the
software engineering environment can be derived by taking related
definitions. If an environment is defined as a collection of tools used to build

a software system [Dart et al. 1987}, then a software programming

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

7
environment is a collection of programming tools the developer uses to build
software systems.

The purpose of the software development environment is mainly to
automate and augment activities in software development such as
programming, design, project management, etc. To support all the activities
and scopes of software development, a supporting environment must
include not only tools but also methods that are currently being used in
software development (state-of-practice).

Since the software engineering environment is an integrated system
with several heterogeneous tools, the component software tools and
methodologies must be managed by an automated mechanism to create,
maintain, and access the component software tools by a well-defined,
underlying management system. In this respect, a software engineering
environment can be defined as an integrated system to manage a collection of
software tools and methodologies to provide automated assistance for
software developers to build objective software systems.

The software engineering environment should provide support for the
activities in program development as well as for those in programming-in-
the-large, which covers all activities of the software development lifecycle.
Among many research issues regarding software engineering environment,
this research focuses on the behavior and the structure of the software tools
and tool data as well as the management system for them. It is necessary to
provide a well-defined mechanism for the software engineering
environment to manage the tool data in a more consistent and controlled
manner if the software engineering environment is truly a system to

automate the software project.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

22 Classifying a Software Engineering Environment

There are several known software engineering environments either in
practice or in research. We categorize them in terms of the underlying system
paradigm as follows: operating system shell, language-based environment,
syntax-oriented environment, toolkit environment, and database-oriented
environment.

2.2.1 Operating System Shell

Modern operating systems such as Unix and VMS provide various facilities
in their shell to automate the simple, yet time-consuming, activities in
program development. Unix automates tool support to some degree in
project management. The pipe and redirection of standard input and output
manage data among tools. The shell command language simplifies many
unnecessary commands from the user interface. VMS provides a unified
format for object codes among different languages in the program
development. VMS supports a version control mechanism for files managed
in development activities.

The architectural view of an operating system shell environment
reveals that it is most primitive in the area of tool data management and
integration. The tool is a simple program in the form of an executable image.
The tool data is simply a file that can be redirected to another tool. The
control of those tcols or tool data is executed by command languages. In such .
an environment, there is no well-defined method to manage the tools or tool
data. The user must control tools to manipulate the corresponding tool data
correctly according to their implicit rules. The types of tool data are not
provided such that every tool data has the same type, i.e. basic type of files
[Kernighan and Mashey 1981].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

2.2.2 Language-Based Environment

The language-based environment provides a set of tools that are built for one
particular language. The tools in such an environment are highly interactive
and offer some degree of programming-in-the-large facilities. Every
component in the language-based environment is specific to the objective
language for which the environment is built. Examples for such
environments are Rational Environment [Archer and Devlin 1986] for Ada
development, Interlisp for LISP language [Narayanaswamy 1988; Steele 1983],
DIANA-based environment for Ada [Rosenblum 1985], Cedar for Mesa/Cedar
[Swinehart et al. 1985], Smalltalk for Smalltalk [Goldberg 1980], and others.

Since the entire environment is to support the development and
execution of programs written in a single language, the user has very few
options for non-programming purposes. However, such an approach makes
tool integration very consistent, and all resources are accessible directly from
the programming activity. Also, the user can easily learn and run the
machine even though the system has limited resources. The main
disadvantage of such an environment is that it supports few services other
than writing code and executing it.

Currently, some advanced language-based environmenis support
various tools around the programming environment and attempt to enrich
functionality. Incremental development of coding, debugging utilities using a
common form of object code, version control, and syntax-directed editors are
examples of such environments. Such tool sets are well-suited for
programming-in-the-large only when the whole project is written in one

language [Archer and Devlin 1986).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

10
2.2.3 Syntax-Oriented Environment
To eliminate simple yet time-consuming tasks of the Compile-Link-Go
paradigm, the syntax-oriented environment supports an intelligent editor
that checks the syntax of the program with the rules of the underlying
programming language. The environment provides the tools for pattern
matching, debugging, attribute grammar, and so on. The Cornell Program
Synthesizer (CPS) [Teitelbaum et al. 1981) and Gandalf [Habermann and
Notkin 1986] are examples of this environment category.

The motivation to develop a syntax-oriented environment was to
provide the user with interactive tools to access the underlying program
structure. Starting with the syntax-directed editor, the environment supports
programming-in-the-small. The user can construct a program using a
template to synthesize a fully functional program. The environment
manages the underlying structures for program syntax and semantic
information, and provides graphical representation of the structure such as in
Pecan [Reiss 1985].

Such an environment has the capability to generate instances of a
syntax-oriented environment automatically. This feature makes it possible to
support a multi-language environment with little development effort. The
environment builder can specialize a project-specific language environment
and restrict the syntax checking. The syntax-oriented environment's main
focus is on coding activities, and it is not suitable for all phases or activities in
the lifecycle. The industry has been reluctant to accept such an environment
in spite of some popularity in academia. Since the syntax-oriented

environment is built on the homogeneous structure for programs, adapting

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanw.manaraa.com

11
different tools with foreign structures into the environment is not a trivial
task.

224 Toolkit Environment

The toolkit environment consists of a collection of tools to support the
language-independent programming effort in programming-in-the-large. It
starts with the operating system and adds programming tools such as
compilers, linkers, debuggers, editors, and assemblers as well as large-scale
development tools like version control, configuration management, and
project management. The toolkit environment has a data modeling capabiliiy
to provide the extensibility and portability. Examples are Unix Programmer's
Workbench (Unix/PWB) [Kernighan and Mashey 1981], Macintosh
Programmer's Workshop (MPW) [Meyers and Parrish 1988], DEC VMS VAX-
set [DEC 1984], Portable Common Tool Environment (PCTE) [ESPRIT 1986],
and CAIS [CAIS 1986].

The Macintosh operating system provides a customizable and
extendable environment because it is constructed with several resources.
Such resources for both operating system and applications include data
segment, code segment, device driver, window object, bit-map image for
graphical display, icon, sharable memory-resident data, etc. On top of such an
operating system, the MPW environment provides an extendable set of tools
for compiler, linker, editor, and source level symbolic debugger. All the object
formats for different languages have identical structures to provide consistent
integration and user interface. The resources in the Macintosh operating
system are predefined and not user definable as new resource type. The
structure of resources is managed by the operating system without semantic

information. The Unix operating system is similar in its extensibility and

e 2y - esrrancs P i e s A G b n s, ey 1 cemnrtre mn e Cm——— S T U

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanw.manaraa.com

12
limited degree of portability. Unix provides a simple data model as a byte
stream to support both file and persistent data. The Unix environment can be
enhanced with new or modified tools without much difficulty.

In such environments, the underlying tool data structure is simple and
has no support for semantic information that the environment system can
control. This results in a serious limitation of tools for incremental
development capability. Since the environment can process only predefined
types for tool data, there is a potential problem for managing tool data in
incompatible tools. |

The PCTE and CALIS tool substrates a persistent object and some degree
of typing of objects by extendable attributes. However, they do not support
well-defined type-checking facilities in a uniform and automated manner.
The details of those environments are discussed in the sections 2.3.4 and 2.3.5.

The toolkit environment evolved from an operating system based
environment to satisfactorily integrate tools with language independency. It
enhanced development capability by version control tools such as VMS SCCS
(Source Code Control System) and CMS (Code Management System). The
toolkit environment essentially integrates tools to support large-scale project
development with multi-language and multi-tool management for uniform
user control. Still, it lacks user definable management of tool data over tools.
The simple tool integration characteristics of such environments cannot
achieve an appropriate maintenance mechanism for a large software system.
2.2.5 Database-Oriented Environment
This approach was created to handle project management related data in
development phases. The database-oriented environment allows a current

database management system to store and share management data such as in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

13
configuration management and project management among project teams.
Typically such a system does not directly support tool-related data
management. Other approaches include some degree of extension for tool
data management by employing a language-oriented or toolkit environment.
One example of a database-oriented environment is Gemstone [Penney and
Stein 1987].

Often the database-oriented environment is based on an object-
oriented database management system that manages software engineering
environment information in a central repository with an object-oriented
approach and functional query languages. One of the motivations for these
approaches is that the conventional database management system is not
suitable for software engineering environment data. In a software
engineering environment, the number of data is small while the variety of
data is large and specialized, in contrast, the conventional database
management system deals with large number of data but small variety. The
object-oriented database approaches also pursue rapid prototyping, fast
implementation of objective software, easy maintenance, and easy
modification [Kim et al. 1987; Lamsweerde et al. 1988; Penney and Stein 1987].
However, although it is a useful concept for software engineering
environments, it does not support in significant measure a specific
methodology for tool development. One of the limitations is that the schema
for tool data definition is static to the environment database, and the user
cannot create a new type of tool data without "remodeling" the schema.

23 Related Works
There are numerous approaches to solving design problems for a software

engineering environment. Many of them are still project specific and do not

SRR i Thd % v b b % e 1 [Seme S vham am et s ——

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

14
support general criteria for a tool data management system. The following
research is most closely related to this research.

231 Arcadia

The Arcadia Consortium focuses on developing architectural principles for
the creation of software development tools [Taylor et al. 1986; Taylor and
Standish 1985]. Initial attempts were made to build a series of prototyping
tools for Ada programs under the architectural principles for software tools.
The Arcadia system is currently under development.

Arcadia has type-based objects and stores them in repositories. All
objects are typed and are instances of some abstract data type. The objects can
be persistent and manipulated by tools. Examples of the objects are source
code, object code, symbol tables, test data, test results, bit-mapped display
frames, and text. Object type is also an object as an instance of type. Arcadia
supports relationships for the tools and the objects.

The strong typing mechanism for the objects prevents an incorrect use
of objects by the tools. Many of the essential tools are built into the
repositories as tool fragments to construct the customized tools. Tools can be
activated by procedure calls in the tool code with static or dynamic binding.
23.2 Gandalf
Gandalf is a syntax-directed environment that employs the Unix file system
as a mechanism for repositories [Habermann and Notkin 1986]. It provides an
advanced structure for syntactic information of the program by a graph
structure in a symbol table. The user shares common design criteria for
program development by using the underlying structure. Data persistency is
maintained by the file system for long-term development while several

variations of the syntax tree reside in process memory. Access control to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

15
tree is maintained by a Unix protection scheme. Programming language can
access and manipulate the tree. The tools communicate with each other by
sharing the same tree in a common repository. All the tool data (objects) are
represented in tree form and named as Unix files. The portability of tools is
supported by Unix.

2.3.3 Gaia Project

This approach intends to support the full characteristics of the object-oriented
paradigm for Ada programming. Gaia is a framework to provide a common
set of machine-independent interfaces supporting integration of tools
without modification. It provides portability, X window-based user interface,
environment definitions by inheritance, class management, extensibility, an
object-or'iented mechanism, and a prototyping mechanism. However, it has
no support for explicit and flexible attribute handling, and it is not complete
in class definitions for attributes in a user-definable manner. Since it is based
solely on an object-based model, it lacks support for the large number and
complex structure of relationships among components of a system [Vines and
King 1988]. ‘

2.3.4 PCTE

PCTE is a set of interfaces being built for the development of Ada software
running in the Unix environment. It serves as the interface to manage host-
system accesses for tool builders. Therefore, it is a Unix-oriented common
interface for both C and Ada. It is now under development by contract with
the European Strategic Programme for Research and Development in
Information Technology (ESPRIT) of the Commission of European
Community (CEC). It is designed according to the object management system

(OMS) using a database management system. Although the PCTE work

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

16
shares many of the goals of the CAIS effort, it lacks the security requirements
and user-definable typing mechanism for tool data in the complex and rapidly
growing kernel environment, which usually deals with a large number of
relationships among objects [ESPRIT 1986).

23.5 CAIS
CAIS is a set of operating system level interfaces to support source-level
transportability of tools among APSEs (Ada Programming Supporting
Environments). The development of CAIS was initiated by the DoD (U.S.
Department of Defense) Ada Joint Program Office (AJPO), designed by the
KAPSE (Kernel APSE) Interféce Team (KIT) [Oberndorf 1985], and its
operational definition is now running under Sun Unix and VAX VMS. CAIS
serves as a set of interfaces to access the KAPSE layer; these interfaces translate
the service calls to host system dependent code. CAIS provides general
facilities of a software engineering environment iﬁcluding file management
and process management, and is now under revision to provide a typing
mechanism for the CAIS node model as well as the transaction and triggering
mechanisms.
CAIS is based on the entity-relationship-attribute model, which
uniformly supports data abstraction with a simple interface. CAIS interfaces
- are designed as Ada procedures and functions in the set of Ada packages.
CAIS is an open-ended system and can be self-evolved over time and cn
different host systems. The entity management system (EMS) of CAIS is
based on STONEMAN requirements [Buxton 1980] using the entity-
relationship concept. CAIS is designed to cover a broad range of tools and

classes of projects [CAIS 1986].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

17

The Entity Management System (EMS) of CAIS includes entity,
relationship, and attribute. The entity is the representation of real world
objects. The relationship is a directed N-ary association among entities. The
attribute associates entity or relationship with relevant values. The typing
requirement of CAIS in EMS is to organize entities, relationships, and
attributes as a partition over sets of types. It is capable of specifying entity type,
relationship type, and attribute type. The relationship type supports both
functional mapping (1 to 1 or many to 1) and relational mapping (1 to many
or many to many). The requirement for typing in CAIS provides the
mechanism to relate data, relationships, and properties of data or
relationships. The security constraint is processed by access control to check
the validity of operations over data. The typing of CAIS supports inheritance
of attributes, relationships, and operations. The requirements for the typings
of CAIS specify to have type definition, type change, triggering mechanism to
be invoked whenever a change occurs [Oberndorf 1985].

24 General Architecture of a Software Engineering Environment

The services that a software engineering environment provides vary
depending on the scope of the environment. The scope of a software
engineering environment can be generally classified in three aspects: project
purpose, developer role, and lifecycle.

The scope of project purpose describes specific characteristics of each
project to develop certain end-application software. A software engineering
environment can be classified with scope of project purpose, for instance, as a
database generation environment, a real-time simulation environment, or a

knowledge-based expert system generator shell.

18

The scope of developer role describes the specific user roles of the
software engineering environment such as project manager, programmer,
designer, configuration management personnel, etc.

The scope of lifecycle describes the time-span covered by the software
engineering environment. Software engineering support can be provided for
earlier phases of the software development lifecycle, whereas most of the
programming environment focuses on later phases of the lifecycle scope.

It is important to understand the roles of a software engineering
environment to ascertain its function in different situations and for different
purposes. Using these aspects of scope, we categorize a general class of
developer roles.

24.1 Roles in Software Development

In modern software engineering practice, the specialization of software
production has created many roles for the software developer. To focus on the
functions of each user to create, manage and use a software engineering
environment, we can categorize the developer roles of software development
as environment builder, environment adapter, and project user. Figure 2.1
shows the relationship among these roles in an integrated environment.

The environment builder establishes the basic and general-purpose
tools and defines general-purpose (or generic) types of tool data. This role
allows the environment components to grow in a dynamic way while the
environment is being used. The environment builder usually constructs the
types of tools or tool data by using a tool that defines or creates types and
objects. This tool is one of the basic building blocks for a general environment
component. The special tool to provide such an environment component

consists of two special tools: an Environment Type Definition Processor

TS —— accs e i . N © e ememt + = et oo . -~ e S ——— . Aare—_ 3P e et e =

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

19

Environment Builder

Tool Building Activity

Tools and Tool Data

General Environment Environment Components

Environment Adapter /—#_J
Tool Adapt @

v Customized Tools and
Project Specific Tool data
Environment
Project User
TOOID
Target Software System End-Application Software

Figure 2.1. Roles in Software Engineering Environment

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

20
(ETDP) and a Tool Compiler. We shall examine the details of these tools in a
later chapter.

The environment adapter adapts general-purpose tools or tool data to
project-specific tools or tool data. This process is usually done by customizing
the general-purpose tools or tool data to the project user's requirements. The
adaptation will be done in the desired scope of the environment; for example,
if the project user is using the resulting environment for program
development, then the environment adapter as project manager can furnish
more specialized tools for program development activities. The scope of
project purpose, developer roles, and lifecycle should be considered for
adaptation of tools and tool data.

The project user develops the objective software system using the
project-specific environment. The project team member shares a common
interface among various tool data on the project-specific environment. The
team member can create new types of tool data if the use of such tool data
among team members is frequent enough to create new types. However,
creating new types of tools or tool data is an environment adaptation activity
that the environment adapter performs as well.

The roles in a software engineering environment can be further
specified for specific functions of each project team member and manager.
This categorization is not by personnel but by functions of the development
activity.

To summarize, a software development activity includes various roles
for the involved members. It is necessary to differentiate the functions of
members both to maintain the software engineering environment and to

manage tools and tool data. This categorization of roles is especially

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

21
important because the software engineering environment is to be self-
evolving throughout the software lifecycle.

In the next section, the roles of project developers in the software
engineering environment are described from an architectural viewpoint.
24.2 Multi-Layered Architecture and Integration
A software engineering environment is composed of many heterogeneous
components. It has a hierarchical structure of services among tools in several
layers to support various services from different sources of requests. A
software engineering environment can be built on top of a virtual operating
system which, in turn, is built on top of native operating system such as Unix
or VMS and provide portable interface supports to the structure of higher
layer. Tools are built in a software engineering environment.

The scope of a language oriented environment cannot be expanded to
support a broad range of interface services in a vertical or horizontal
structure. As an example of a language-oriented environment, the Ada
programming environment can provide rich functionality for building the
stand-alone Ada software system. However, it does not support a very
flexible mechanism to integrate other Ada programs in its language-oriented
environment (horizontal integration).

The operating system supports the interface between the software
system and hardware to provide appropriate hardware services (vertical
integration). There is an important interface missing among software
systems, which is the interface among tools in the software development
phase. This missing interface will be filled by the typing mechanism

presented in this dissertation.

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanw.manaraa.com

22

The software engineering environment must support tool-building
services as well as integration-management services among tools. The tool-
building services include reusable type definitions via an inheritance
mechanism and their appropriate management. The integration-
management services include customizing and tracing of functionality of
tools for tool builders' requirements. When tool builders can define their
own types of tool data and tailor them to meet their purpose, the software
engineering environment will provide self-evolving services in the dynamic
situations of software system development.

The environment user who has the various roles of project
management, tool construction, or tool use for objective software
development interfaces with the environment via command language. The
carriers of information between the environment user and the environment
can be specified as environment data. The environment data can be further
specified in terms of where it interfaces. The environment data can interface
between the environment and tools, or among tools.

The environment itself consists of several layers, from hardware to
environment user. The operating system controls hardware and provides
services such as command language interpreter or application software to the
requesting system. If the developer uses a set of tools (operating system tools)
such as high-level language to develop objective software system, then the
user will interface with the tools to get the services of the operating system
which, in turn, requests services to the hardware. The command shell
(overlaying environment) interfaces with the tools instead of calling directly
to the operating system services. The user will create and manage the tools

via the command shell if it is rich enough to support all required

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com

23
characteristics of the software engineering environment. Figure 2.2 shows an
architectural view of the conventional operating system based environment.
In this architecture, the environment is simply all the layers from operating
system to tools.

The specific roles of a software engineering environment are all
included in a single tool set. Each tool can either directly call the services to
operating system or use an overlaying environment such as a shell.

In this software engineering environment, many interfaces among
several underlying layers result in many integration methods among tools.
For example, a text editor can be coded either by using full implementatioﬁ of
machine level instruction or by customizing existing tools provided by the
operating system. The interface method between two implementations can
be defined in ad hoc specifications for specific requirements. The future text
editor that intends to integrate such tools should be implemented either with
full design and implementation knowledge of existing tools or with specific
interface rules for existing tools. The resulting design of tools in such an
environment enforces only tight integration among tools. This results in
difficulties in the software project with a large number of teams and a long
period of development cannot afford. It is an especially serious problem in
programrhing—in—the—large. Figure 2.3 shows how the architecture for the
software engineering environment separates environment user roles
according to the use or management of a software engineering environment.
This architecture supports several interfaces among the layers from hardware
to user interface to the environment.

The operating system layer provides services from the hardware. The

implementatio_n;of this layer is machine dependent. However, the portability

———— R T i . . : N - et bt e -t - -

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanw.manaraa.com

24

User

Project Management Tools

Tool Building Tools
Tool Management Tools

Interface
Environment

Overlaying Environment

Start Shell

Operating System Tools

System Call

Operating System Kernel

Hardware

Figure 2.2. Conventional Architecture for Software Development

A k. T e i A 7 b e e a8 S5t dei e [r—. e 8 it e s e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

Environment Type Project
Management Management
Tool Building Tools Project Management
Tool Management Tools Tools
Tool Layer \ /
Tool Support System
Object Management System
Environment Entity Management System
Support
Layer
Virtual Operating System
Native Operating System
Operating
System
Layer

L Hardware

Figure 2.3. Conceptual Architecture for Software Engineering Environment
[Source : Penedo and Riddle 1988]

A T e e oo b At 4 @ irmnane tht et e N

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanw.manaraa.com

26
of this layer can be partially supported if the implementation of the native
operating system uses a commonly supported host language among different
machines. The purpose of the operating system layer is to access and control
the hardware. The interface to the operating system layer is specified as a set
of system calls to the native operating system.

The environment support layer provides the services of environment
component management. The environment component in this layer can be
the object in an object management system or the entity in an entity
management system. The environment support layer interfaces with the
operating system layer to manage the environment component. This layer
can be fully portable between different machines and operating systems.

The virtual operating system provides a set of general operating system
calls that are universal for all native operating systems. The purpose of the
virtual operating system is to make service interfaces from the higher level
transparent and the environment portable to a wide variety of hardwares and
native operating systems. The interface specification of the virtual operating
system must provide a rich and complete set of parameters to select a specific
native operating system call.

The object management system (OMS) provides an object-oriented
model to define, organize, access, and instantiate the object of the software
engineering environment. The object of the environment is an abstract data
type as a carrier of information to supply the data to tools (simple or
constructed type of data) or to control the data (process). In a later chapter we
will discuss the details of the object-oriented model. The entity management
system (EMS) creates, organizes, and accesses the entity and relationship of

the entity-relationship model. In OMS/EMS, the lifecycle of the object or

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanw.manaraa.com

27
entity as a carrier of information is managed. The higher level system simply
requests the services to OMS/EMS in consistent interfaces. The OMS/EMS
interfaces with the virtual operating system to allocate and access computing
resources such as memory or file to construct and manage the objects of the
environment.

The tool layer provides services to manage tools and tool data. Each
tool and tool data consists of single or multiple simple objects. The
construction of tools, the definition of tool data, and their management are
done in a consistent and unifying manner. The environment user interfaces
with the software engineering environment through either a call to tools or
the command shell, which is a simple tool to interpret the user request to call
tools. The tool layer provides two specific roles for environment
management and project management.

The roles for environment management deal with the management of
tool and tool data for the environment user. The tool support system
manages tool data. The environment type for tool data is defined and
cataloged in the environment type library as a reusable component of
software development by an environment type definition mechanism. The
tool support system integrates the tool data for high-level, role-specific tools.
The access mechanism to the tool data is managed at this time.

The environment type management activities of the environment
builder or the environment adapter uses the tool-building tool or tool-
management tool. The project management roles for software development
uses the project management tool to access and use the tools. These activities

include roles from programmer to project manager.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

) 28

The integration of several layers as well as tools and tool data should be
supported in a software engineering environment. Interfaces between user
and environment and among tools must be well defined. The user interface
must be easy and familiar to the existing practice of software development.
The current trend of user interface moves from command interface to menu
driven or graphical interface [Meyers and Parrish 1988]. The database interface
provides a repository of tool data in the library, file system, or database
management system [Burton et al. 1987]. The implementation of a database
interface is environment-specific so that the efficiency of tool data is
maximized while the user interface to such tool data is consistent and
transparent.

2.5 Required Characteristics of a Software Engineering Environment
A software engineering environment should support the following features:
1) The methodology and automation for all phases of the software
development lifecycle, and
2) The general tool to provide most commonly used functions such as

editor, compiler, and library management [Houghton 1987].

The required characteristics can be further specified as the aspects of
utility, usability, adaptability, degree of automation, degree of integration, and
cost-effectiveness [Penedo and Riddle 1988]. The utility aspect requires

1) coverage of user roles such as programmer, designer, project manager,
quality assurance personnel, and tester, and

2) coverage of lifecycle activities from requirement engineering to
maintenance.

The usability aspect requires

1) user friendliness,

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanw.manaraa.com

29
2) easy and consistent user interface of tools, and
3) closeness of tool functions to existing practice.

The adaptability aspect requires the ability to customize project-specific
characteristics as well as an individual developer's preferences.

The degree of automation should support the automated assistance for
time-consuming, routine jobs in software development.

The degree of integration should support

1) a consistent user interface among relevant tools and
2) code and/or data sharing.

The cost-effectiveness aspect requires that the software engineering
environment meets long-run economics in software development; that is,
the use of the software engineering environment must enhance the
productivity of software development and the quality of the resulting
software system.

Although no existing software engineering environment supports all
the characteristics outlined above, such an environment should furnish the
adaptability, automation, integration, and cost-effectiveness. To provide
those characteristics, we can summarize the minimally required features for a
software engineering environment:

1) it must support a broad range of user roles that includes programmer,
designer, and maintenance team as well as the entire lifecycle activities;

2) it must be analyzable;

3) it must be customizable to a specific purpose;

4) it must be extendable (incrementally definable);

5) it must be traceable; and

6) it must support integration.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

30

These desirable characteristics cannot be achieved easily without well-
designed underlying structures. With a vast amount of information and
functionality required, software engineering environments will fulfill the
desired tasks when the a priori design of structure and behavior is sound and
complete. This research is based on these required characteristics for a
software engineering environment and provides an essential mechanism to
fulfill these criteria.
2.6 Dynamic and Static Features of Software Tool Data
In a software engineering environment, the types of tool data can be
predefined (system supplied) and user defined. The standard input or output
is an example of predefined types for files. To provide a rich set of tool data
and to manipulate them in the most productive way, it is necessary to
support user-definable types for tool data. The software engineering
environment can provide a set of predefined tool data types when it is
installed. Those predefined types are the building blocks for user-defined
types of tool data. After installation, the software engineering environment
must be capable of providing services for user-level definition of tool data
types. Additionally, the dynamic features of tool data must be considered.

According to the ANSI/IEEE Standard 729-1983, the difference between
dynamic and static features lies in changes prior to or during execution time.
Dynamic features of the tool data require that tool data types be defined
during runtime of the software engineering environment system. If such
facilities are not provided, the environment can only utilize a set of
predefined data types such as in the operating system shell or in the language
environment, where no dynamic type definition is supported. The criteria for

differentiating the dynamic or static features are very much relative to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

31
underlying system. In the subject of tool data in a software engineering
environment, the dynamic feature means that the types or values of the tool
data can be defined and changed during execution. This issue is especially
important to overcome the problems of a language-based environment;
where all objects of the environment are subject to the type management
mechanism of underlying language features.

True dynamic features can be achieved only when the software
engineering environment supports type definition mechanisms and
management tools for the object (tool data) in runtime. However, the claims
of dynamic features in interpreter-based environments such as Common
LISP or Smalltalk are not realistic when we consider the productivity of such
system in the practice of software development [Narayanaswamy 1988]. The
lack of a dynamic type definition capability in database-oriented
environments or language-based environments makes it very difficult for
such environments to achieve the goal of the software engineering
environment until a schema or tool data type definition is dynamic. To
achieve a productive, continuously evolving software development
environment, the software engineering environment must support a sound
mechanism for the environment user to define the new types of tool data and

to utilize the environment system to manage the tool data in dynamic way.

T AT T T LT T e o o L el 4 &e s i b i ot 1t — emag g

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

3. OBJECT-ORIENTED DEVELOPMENT PARADIGM

The software engineering environment requires a well-defined mechanism
to provide necessary data and procedural abstraction and modularity. The
object-oriented design methodology supports those properties.

Object-oriented design is a methodology used to map the real-world
problem domain to a representation of the solution domain in software. The
object-oriented design approach is a unique method which provides all three
properties necessary for the software design: data and procedural abstraction,
information hiding, and modularity of software [Pressman 1987). The object-
oriented development paradigm is a good design technique that provides a
systematic cohesion between data and operations.

The object management system (OMS) is a software system used to
create objects and manipulate service calls from objects by sending messages
so that both the structure and behavior of objects are managed in an uniform
way. The object management system is different from an entity management
system in its approach to building the structure and behavior of the system
component.

31 Objects, Methods, and Messages

An object is an entity whose behavior and structure are described to represent
a real-world component. The object is the basic unit of a system used to build
another object in the object-oriented development. The object can be
application software, documentation, file, display, string, or thing. The object
consists of encapsulated data representing the private part of the data
structure and operations that manipulate the encapsulated data. The object
must have sufficient information to describe the nature of the object and how

it can be manipulated. The private part of data in the object is the set of

i e e e e - e e e .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

33
internal variables manipulated only by operations of the object. The shared
part of the object is viewed through the interfaces (specification of operations)
that can be invoked when other objects send a certain message.

Booch describes the object as an entity that has the following
characteristics [Booch 1986]: -

1) an object has states that are persistent in time and space;

2) an object is characterized by the actions it permits and requires of other
objects, namely, actor, agent, or server; -

3) an object is an instance of some class;

4) an object is denoted by a name; and

5) an object is viewed by its specification.

Wégner describes the object as having a set of "operations" and a
"state" that remembers the effect of operations [Wegner 1987b).

In the object-oriented paradigm, the objects are primitive elements that
combine encapsulated data (private data structures), operations (methods),
and properties (attributes) for data and procedures. The operations of the
object are manipulated by means of messages.

The properties of the object consists of the information to describe the
encapsulated data with persistent state and a set of operations to transform
the state. The state of the data in the object is maintained after the operation
has made some change. These characteristics are especially important when
the object is an identity that will persist across several tools or applications.

The method is an operation that manipulates the private part of the
data in an object. The method is typically a procedure or function that

legitimately transforms the data structure. It is invoked by a message.

——e AR T TR T a4 e ot 7 et S5 e RS, U

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com

34

The message is a request to the object to perform one of its methods.
The message contains the following information: the object to which the
method is applied, the method requested, and the arguments to be passed to
the method.

The details of the data structure and the implementation of methods
are hidden and protected from the outside of the object. The modularity is
naturally supported because the software system is grouped with component
objects that have well-defined interfaces.

3.2 Classes, Instances, and Inheritance

Objects can be categorized by a general description. The description of a
certain range of objects is a class, which serves as a template to be used to
make new objects. In an object-oriented paradigm, every object is an instance
of a class. Objects sharing the same class have the identical properties of an
encapsulated data structure and a set of interfaces for operations. This
organization by class enables type checking. For example, the object
management system can provide strong typing to check the use and
instantiation of every object in compile-time.

Inheritance is a mechanism by which an inheriting class is constructed
by taking attributes, relations, and operations from the inherited class.
Inheritable properties of a class are defined as a set of interfaces in the
inherited class so that the visibility between classes is maintained. The
inherited class is called the "superclass" and the inheriting class is the
“subclass." The class hierarchy by inheritance groups objects by their
properties.

The inheritance can be discussed in terms of specialization and

generalization. Specialization-is the union of properties from one or more

e e e e R T] 3. . B, . | - e g

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com

35
superclasses together with the ability to add properties. That is, inherited
properties are shared by all subclasses. Generalization is the opposite of
specialization; which takes the intersection of properties of type to build a
superclass. In generalization, the inheritance will create a new class, which
will be a superclass of already existing subclasses.

The most useful mechanism in software engineering is specialization,
which can be used to define tool data types incrementally in lifecycle
activities. Although generalization is useful for defining a frequently called
type that is discovered after its subclasses are used, this kind of activity in a
software engineering environment is not desirable because of potential
inconsistency among objects.

3.3 Data Abstraction and Information Hiding

The term “"data abstraction" refers to a technique that concentrates on
essential characteristics of the data by hiding unnecessary information about
the details of the data and providing associated functional characteristics.
Data abstraction is accomplished when data typing is supported, in order to
separate and hide the details of the data. Data abstraction allows the software
designer to use the data in a correct and consistent way, and thereby focus on
higher-level design activities.

The abstraction techniques have been developed since the first
programming language was introduced. The procedural abstraction to
abstract algorithmic information in design activities results in stepwise
refinement and modularity. The abstraction techniques evolved with the
software development practice of providing a suitable design methodology

such as structured design or functional design methodology.

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com

36

Abstracting the data object in software development became extremely
important with more complex structures, and a set of dedicated procedures to
manipulate them became necessary. A To manipulate the complex data
structure in a consistent manner, a set of associated procedures must be
attached and related to the data to create a dedicated type. Data abstraction is a
way to form such an abstract data type to couple the data object with associated
procedures to hide the data structure and implementation detail.

The object-oriented design paradigm is well-suited for data abstraction
because it encapsulates (hides information in) the data structure and
implementation details of the operations (associated procedures), and
provides the specification for the object in higher-level abstraction. The user
of the object does not need to know how the operation takes place or how the
data is transformed. With the aid of data abstraction and information hiding
in the object-oriented design paradigm, it is possible to develop the software
system in a systematic way by building component objects and integrating
them.

34 Persistence

Persistence is the extent of the lifetime for data kept in the system [Wegner
1987z2]. In the programming language environment, the lifetime of the data
object usually does not exceed the lifetime of the program. Although data
may be kept in the file after the execution of the program is completed, all
other data used in the program are discarded. The parameters to the
procedure or to a program has even shorter lifetime. Global data have longer
persistence within the program's lifetimes. The database has a persistence

that transcends the individual programs' lifetimes.

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com

37

Persistence can be implemented in several ways: in the file, in the file
with cache memory, and in the main memory. Conventional database
systems implement the persistency by using a file system to store all changes
of the data and to query the data with special operations. To improve the
access efficiency, the caching mechanism has been introduced for persistent
data objects in the file.

To provide the dynamically changing data in a multiply accessing
environment such as a software engineering environment, persistence must
be supported in the main memory level as well as in the file. The object of
the object management system must be persistent in the main memory to
provide an appropriate mechanism for tool data. The software engineering
environment uses the persistent object as tool data interfacing among tools or
with the user.

3.5 Language Supports and Strong Typing

There is a difference between abstract data in the programming language and
the object in an object-oriented paradigm. The agent of the abstract data in
programming language is the procedure call, which is handled by language
facilities and implemented by binding the abstract data with appropriate
parameters. The object is handled by the message that an agent sends to the
object management system with object identity, method, and parameters for
the method. Sending a message is not like a procedure call in the sense that
the actual binding must be done at runtime, which creates more overhead
than if it were done in the procedure call of the programming language. The
identity of every object must be resolved at runtime and the type checked
accordingly. Appropriate management of the objects requires a special

environment, namely, object management system.

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanw.manaraa.com

38

Object-oriented languages support the objects as language features, and
the objects are instances of the class to provide the inheritance [Wegner
1987a]. The type-checking facilities for the object and message are provided by
the language. Object-based languages such as Ada provide some degree of
facility for object creation (package or task); however, objects are managed
through the runtime support (Ada library). To fulfill the requirements of the
object-oriented paradigm [Wegner 1987b], the programming language fails to
provide all the facilities. For instance, to have an autonomous object that
responds to the messages or operations and shares a state, the object must be a
concurrent entity. However, the concurrency in a high-order language is
generally not feasible. The class mechanism must be supported during
runtime to provide dynamic organization of the objects while the language
environment is not robust enough to support such type checking
appropriately.

A strongly typed language provides a determination for type
compatibility of all expressions for values at compile-time. Strongly typed
language facilities support as many services as possible in a static way to help
the programmer detect possible errors.

3.6 Object-Oriented Features in Software Engineering Tool Data

The object in software development can be identified in a data-flow diagram
and modeled as abstract data [Booch 1986]. Modeling a real-world subsystem
into an object is more natural than transferring it to a procedural and data-
oriented entity because the object itself represents the real-world subsystem
without structural transformation. The data-oriented development

transforms the real-world system to a functionally decomposed entity.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

39
However, it lacks the proper means of data abstraction and information
hiding, concurrency, and persistent data.

To define an object that serves as abstract data among several tools in
the software engineering environment, we need to focus on the design of the
requirements of the tool data object in the environment with sufficient
information to provide to the user. The object-oriented design technique is
well-suited for such demands.

To provide the wide range of characteristics necessary for an ideal
object manipulation, the object management system as a programming
environment must support the most efficient method for object-oriented
design of a software system. An object-oriented structure is suitable for the
environment when problems of coordinating tools with the underlying host
system exists, including hardware, languages, and operating systems [Cox
1986; Cox 1984]. This is because of its heavy dependence on extensive use of
abstraction (either data abstraction such as the package or private types of Ada
or program abstraction such as the generic package of Ada). The object as an
instance of object type (class) is manipulated exclusively by operations
(methods) that are encapsulated in their type. The implementation of these
features varies. In a language, it can be done by means of symbol
management in a static way. However, in a software engineering
environment, it needs to be dynamic and managed by runtime facilities

through some central repository (database or library).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

4. EXPLICIT POLYMORPHIC TYPES FOR TOOL DATA

In a software engineering environment, the data manipulated by tools can
represent many kinds of data objects such as code, documentation, graphic
images, processes, and so on. These data objects are used by tools in the
software development process. To support the smooth integration of tools,
the software engineering environment needs well-defined mechanisms to
represent the meaning of such data objects according to their usage and
behavior. To categorize such objects and represent the meaning of those data,
the type mechanism is introduced. The environment types used to categorize
the tool data shared by tools can be of many forms including basic types such
as integer, structured types such as record, array, or list, and process types such
as the image of the program in execution.

This chapter first describes the required characteristics of an
environment type in software engineering environments, and ther discusses
the environment type processing language. The environment type
processing language includes two languages: the environment type definition
language to define new environment types, and the environment type
manipulation language to instantiate tool data from environment type and to
operate on tool data by sending messages. A sample typed environment for
software testing tools is described in a later section.

41 Explicit Polymorphic Types

In general, types can be described as sets of values with functions to obtain the
values, from a universe of all possible computable values. If each value
belongs to at most one type, the type 'system is monomorphic. If a value
belongs to many types, the type system is said to be polymorphic. Operations
on polymorpf\ic types can be applicable to data of mo:_'c_é than one type.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

41

To support maximum reusability and productivity for the software
development process, types should be defined as polymorphic and
parametric, in which the parametric polymorphism allows the operations of
types to work uniformly on a range of types so that the type construction
process can be reusable. A type parameter used in the parametric
polymorphism provides uniformity of type structure [Cardelli and Wegner
1985].

To provide good abstraction, information hiding, type inheritance, and
parametric polymorphism for tool data types, the environment type
definition language initially designed by Lindquist defines actual
environment types for implementation and analysis [Lindquist et al. 1987;
Levine 1988]. The environment type is defined explicitly by a definition code
using an environment type definition language. Its type system supports the
parametric polymorphism. We call such types explicit polymorphic types.
411 Environment Types in a Software Engineering Environment
In software engineering environments, environment types used for the tool
data are abstract data types, which combine encapsulated data and operations
to support an uniform behavior of types. This uniformity of behavior allows
a consistent manipulation of type instances. Such types of objects are
elementary software components to be reused in software development. Once
the consistent manipulation of the tool data is supported by data abstractions,
the use of the environment types supports reliable and modular software
development as described in Chapter 3.

By using environment types for the software development, the new
environment types of tool data are introduced for project specific purposes.

To allow the evolution of software engineering data, types are not limited to a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

42
finite number of initially predefined types. In addition to the predefined
types, user definable types must be supported in the software engineering
environment. The environment type definition must be dynamically
supported to create the user definable environment types.

In the meantime, the predefined types can be used to construct a
software engineering environment. This feature allows the software
engineering environment system to be composed of the typed components.
Examples of such types are structural node type, file node type, process node
type, relation description type, and attribute description type of the CAIS
environment.

4.1.2 Polymorphic Types for Software Engineering Tool Data

To provide reusability and modularity of environment type definition
process, the environment type system must support polymorphic types.
Polymorphic types for tool data allow the type system to maintain the same
structure of types, which allows the reuse of operations for the range of types
defined by type parameters. Reusability of environment data is most
efficiently achieved by allowing the polymorphic types to define new types
with an appropriate type parameter and by allowing inheritance of properties
among types. The type system embedded in the software engineering
environment must support this polymorphism with a type parameter.

4.1.3 Type Inheritance

The type inheritance is important for the new definition of environment
types to provide for type evolution. A new type may inherit properties of
super-types (parent types). Inherited properties are the content data structure,
the attribute of the type, the relations of the type with other types, and the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanw.manaraa.com

43
operations. A new type can become a subtype of an existing type by inheriting
every property of the supertype.

Multiple inheritance which allows the inheritance of the properties of
more than one supertype provides an efficient way to create new types. The
properties of one or more types are reused in the definition of a new type in
such an inheritance mechanism.

414 Instances of Environment Type in the Software Engineering

Environment
In a software engineering environment, the tool data are instances of the
environment types. Some tools produce tool data and others consume them.
In such an environment, the instances of environment types must be
managed by the software engineering environment to provide appropriate
services and maintain a consistent behavior for tools. Conversely, in a
programming language, the instances of the type are owned and managed by
a single program through a symbol table or run-time support.

To be shared among many tools, the persistency of tool data as well as
their environment types in the software engineering environment is
necessary. In such an environment, the tool data permit the tight integration
of several related tools, such as in inter-application communication (IAC).

Each instance of a environment type in a software engineering
environment is an autonomous entity capable of managing its encapsulated
data over a period of time. That is, environment data are objects that are data
abstractions with a set of operations and a hidden local state that persists.

42 Environment Type Constructor
The information shared among tools is described by an environment type

definition language. Within this language are constructs for content,

4
attribute, relation, and operation. Name visibility for defining the
environment type is accomplished by WITH and INCLUDES. Type
inheritance is defined by SPECIALIZES. Type parameter is defined by the
GENERIC construct. Type construction using APPLIES-TO provides
parametric polymorphism. Types that are declared for the private purposes of
a single environment type can be encapsulated by the NESTS construct.
Figure 4.1 describes the syntax for the environment type definition language.
The functions of each construct are described below.
generic <Generic Type Parameters>
The tool data are typed with parametric polymorphism through the
GENERIC construct. The GENERIC clause allows the user of the
environment type to supply actual type parameters when the environment
type is instantiated. When the environment type is processed, the generic
type parameters are bound to actual identifiers that are defined by Generic
Type Parameters. The generic construct supports a parameterized definition
of tool data with a great deal of reusability.
with <Ada Package Names>
The WITH construct is for the visibility of the Ada packages used for
environment type definition.
includes <Environment Type Names>
The INCLUDES construct is for the visibility for the environment types used
in the definition of the environment type.
nests <Nested Environment Type Definitions>
The NESTS construct encapsulates the definition of internally used
environment types and makes them visible to the objective environment

type definition. The NESTS construct allows the type designer to make a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

45

o_type_definition ::=
[generic (Generic_Name {, Generic_Name});]
[with Ada_Package_Spec {, Ada_Package_Spec};]
[Includes Etype_Name {, Etype_Name};]
[nests e_type_def_body {e_type_def_body} end nests;)
e_type_def_body

e_type_def_body ::= application | e_type_body

e_type_body :=
environment type Etype_Name [specializes Etype_Name_List]
[with [contents_description]
[attributes_description)
[relations_description]]
[operation
{for Operation_Name use subprogram_spec }
{subprogram_spec}]
end Etype_Name;

application ;1=
environment type Etype_Name applies Etype_Name to actual |_parameters;
actual_parameters ::= parameter_association {, parameter_association}
parameter_association ::= [Generic_Name =>] Etype_Name
contents_description ::=
contents
Name : Etype_Name | Ada_type | Generic_Name {, Etype_Name | Ada_type |
Generic_Name }
attributes_description ::=
attributes
Name : value | type {, Name : value | type }
type = integer | float | boolean | string | date | list_type
value ::= value of one of the types of "type"
relations_description ::m
relations
Relation_Name to List_Of_Etypes [predefined]
[with attribute attributes_description]
[cardinality = rangs] [primary)
{ Relation_Name to List Of Etypes [predefined]
[with attribute attributes_description]
[cardinality = range] [primary} }

subprogram_spec ::=
procedure Name [formal_part]; | function Name [formal_part] return type_mark;

formal_part = (parameter_spec {; parameter_spec})
parameter_spec ::= identifier_list : mode type_mark
mode ::= [in] | Inout | out

type_mark ::= Etype_Name | Ada_type | Generic Name

Figure 4.1. Syntax of Environment Type Definition Language

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanw.manaraa.com

46
modular definition for a substructure of the environment type while the
details of the definition are hidden from the user of the type. The properties
of the environment type in the NESTS construct are inherited by the
objective environment type. However, this mechanism is not for the type
inheritance since the NESTed types are not part of the environment types
sharable in the software engineering environment. The NESTS construct is
not transitive, so that only one level of nesting is allowed.
specializes <Environment Type Names>
Type inheritance is supported by the SPECIALIZES construct to allow
inheritance of all properties of content data structures, attributes, relations,
and operations. This inheritance does not permit visibility of definitions.
SPECIALIZES allows multiple inheritance.
applies <Environment Type Naﬁe> to <Actual Type Parameters>
The APPLIES-TO construct allows the generic instantiation of the
environment type using type parameters. The effect of this construct is to
create new types of the actual type parameter set and bind them to the body of
the environment type definition or to the nested type definition. With the
GENERIC construct, APPLIES-TO completes the parametric polymorphic type
definition mechanism in the software engineering environment.
contents
The CONTENTS construct defines the encapsulated data in the environment
type that carries information among tools. The data structure that the
environment type object carries is stored in the content and used by the tools
through operations applied on them. The content can be described by the
environment type, Ada type, or generic type name. Multiple content fields

can be defined to construct a record.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

47
attributes
ATTRIBUTES define the association of information about content and
relations of the environment type. For example, an attribute of the
environment type can be the range of the value for the content or creation
information of the environment type. ATTRIBUTES describe the
information about the type or object but are not used to carry data for the
environment type.
relations
RELATIONS is a mapping among instances of environment types. The
relation of environment types associates two different entities in the entity-
relationship model. The relation is a channel for the tool to navigate other
instances of environment type.

A relation is PREDEFINED if the environment type forces the tool to
access the relation only by defined operations. The relation can have a
CARDINALITY that limits the number of relationships to other instances.
Cardinality defines the number of relationships emanating from the
instances of the environment type. Each relation is assumed to be secondary
unless it is explicitly defined as PRIMARY. A relation can have attributes that
attach informations to the relation; these attributes are in the same format as
the ATTRIBUTES construct.
operation
The OPERATION construct defines the methods used to manipulate the
information declared in the environment type. The operations are the only
means to manipulate any of the encapsulated data structures in the type
instances. The operation in this environment type has the Ada subprogram

specification, that is, procedures and functions. A FOR-USE construct allows

e R T - — = = e o Y e - A iy et Smimas 5 mmms et s e <

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

48
the environment type to override any inherited operation and to redefine
new specifications with the same operation name.

43 Environment Type Instances
The environment type and the tool data must be consistently managed by the
software engineering environment. These environment types and tool data
belong to not one but many tools in the software engineering environment.

There are two logical worlds in environment type management: the
definition world and the instance world. The tool data are realized by
instantiation from the environment types. The environment type definition
world is a conceptual area where the environment types are organized in a
library. The environment type instance world is a conceptual area where the
tool data are stored. The tool data are created by a tool and used by other tools
to store, query, retrieve, and carry information among tools. These tool data
are shared objects that are persistent in a software engineering environment.
Figure 4.2 shows the inter-relationships among the environment types and
tool data as instances of the environment types among tools.
43.1 Environment Type Instantiation
An environment type is instantiated to create a new object of tool data. Once
instantiated, the tool data from one environment type share the same
properties but carry their own data values. Environment type instantiation
must support the construction of a data structure along with appropriate
attributes and relationships for the object to carry the information.

The environment type manipulation language is used to provide
mechanisms to create the environment type instance (tool data). The
environment type is instantiated by the DEFINE construct. DEFINE creates

the instance of the named environment type in a given pathname with a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

49

Environment Type Definition World

T
specializaty Wﬁm
T1)
i
specialization
TX
instance_of instance_of instance_of
D1
Tool Data of TX
DB Tool Data of T2
DA
v, Tool Data of TX
creates § e, Environment Type Instance World

Figure 4.2. Environment Types and Their Instances among Tools

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

50
specified intent. If there is an instance for the environment type with the
specified pathname, the instance is opened for the given intent.

After DEFINE, a tool uses such an instance by sending messages. The
SEND construct sends a message to the specified instance, which becomes
tool data when it is used by the tools. The CLOSE construct closes the instance.
After CLOSE, the tool cannot access the tool data.

The syntax of the environment type manipulation language for
instantiation and use is described in Figure 4.3. The DEFINE, SEND, and
CLOSE statements are used in the tool code written in the host language.

The node handle for the instance is the identifier used to access the tool
data in the software engineering environment. The node handle defined in
the tool code for a specific tool data can differ from one tool code to another.
The actual reference to the tool data is resolved by pathname not by the name
of the node handle‘in tool code.

The DEFINE statement provides the intent of use of the instance.
Among tools, the intent information is vital so that mutual exclusion and
locking mechanisms can operate safely.

The INCLUDE construct provides visibility of the environment type
used in the tool code.

4.3.2 Persistence of Environment Type Instances

The tool data must be a persistent object that keeps the state of the value. The
persistency of the tool data must be supported by both the file system and the
main memory because the tool data can carry an actual process that can be
shared by several tools. The CAIS node model provides a proper mechanism

to support persistent tool data. The operations for tool data that are defined

e rrrr— e e 1 S i 22 e ©

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

51

include Etype_Name {, Etype_Name} ;

define Node_Handle : Etype_Name (Pathname , Intent) ;

send Node_Handle . Operation_Name [actual_parameter] ;

close Node_Handle ;

Pathname ::= CAIS pathname

Intent ::= CAIS INTENT description

actual_parameter ::= Ada Actual Parameter Description

Figure 4.3. Syntax of Environment Type Manipulation Language

52
in the environment types must be persistent and active during the lifetime of
the tool data in the software engineering environment.

44 CAIS: A Building Block for an Environment Type System

The CAIS is used in the research as a basic software engineering environment
to build the type system for tool data. It provides a set of interfaces among
APSE (Ada Programming Support Environment) tools and the virtual
operating system. It provides reasonable source-level portability to other
environments. The structures and functionalities of the CAIS related to this
research are considered below.

44.1 Architecture of APSE

The architecture of the APSE can be described as a set of layers from the host
machine to the user. The core of the APSE is the KAPSE (Kernel APSE) that
provides a set of transparent interfaces to host machines and operating
systems with a common set of capabilities. The next layer, the MAPSE
(Minimal APSE), includes the set of software tools used to support a minimal
set of functions for software development. MAPSE tools include compilers,
editors, and linkers. MAPSE tools interface through KAPSE. The highest
layer of an APSE provides project-specific tools and services such as design,
specification, testing, and documentation. Figure 4.4 shows the APSE
architecture [Kramer et al. 85; Buxton 1980].

44.2 CAIS

The CAIS is designed to support full functionality for the APSE. The CAIS
was proposed to maximize the transportability of the APSE tools and
environment objects as well as the other environment tools among different
host machines and operating systems [Kramer et al. 1985]. The CAIS defines a

set of interfaces that are universally useful so that the user of the APSE uses

e e e e PESETEE i . 4 . e R PPy, - - o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

53

Compiler

KAPSE
File System,
Task Management, ..

Configuration
Manager Linker/Loader

[Other Tools]

CAIS

Figure 4.4. APSE Architecture [Source : STONEMAN]

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanw.manaraa.com

54
the CAIS interfaces to achieve portable and methodology-independent
development. The implementation details of the interfaces to host systems
are well encapsulated and abstracted. The CAIS is an important building
block for portability and enhanceability in evolving Ada development
environments.

The CAIS is based on the entity-relation-attribute model (ERA model).
This model supports the modeling of environment objects by entity and
mapping among the objects by relations. The properties of the entity and the
relations are described by attributes attached to them.

The CAIS consists of three major interfaces: node model, process
management, and CAIS input and output management. We shall review
these subsystems and the é'evision of CAIS with respect to the typing facilities
as they relate to the research concerns.

4.4.3 Node Model

The CAIS is structured by an ERA model called the node model, which
structures entities that are objects of the environment, with associations
among entities and their attributes. The relations connect the entities related
to each other. The attributes carry the information about the entities and
relations.

Each entity in the node model is repreéented as a node. A nodeisa
data representation of the information about the entity. The basic schema of
the node model is shown in Figure 4.5 (a). A node can be represented as an
object if the modeling provides an object-oriented model. In the ERA model,
the focus of the structure is on the identity of the entity and the relationships

among entities.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

55

Node
Relationship (Key)
R(K)
Relationship
Attribute
Node
Attribute
(a) Schema for Node Model
CURRENT _STATUS=>RUN Node N1
ACCESS(K1)
Node N2

TIME_WRITTEN=>(TODAY) DATA(PROGI)

Node N3

(b) Example of Node Model

Figure 4.5. Node Model

LI U T . (i e Aot | a1 o ot vt et o o VS

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com

56

A node is categorized as a structural node, process node, or file node. A
structural node represents a user, group of users, directory, and roles. It
groups the other nodes and represents meaningful organization for node
structure. A process node represents a process in the environment and
provides information about the process such as the status of the process. The
actual code image of the running process represented by the process node is
stored in a separate file represented by the corresponding file node. A file
node represents an external Ada file and device.

Interconnections among nodes are represented by relationships that are
the specific relations with relationship keys. These keys distinguish the
relation by a unique named value. The relationship allows the node to access
other nodes by navigating relationships emanating from the node. An
example of a simple node model is shown in Figure 4.5 (b). With both
primary and secondary relations, the node model furnishes a hierarchical
model with the capability of network structure. If the relation is primary, the
node model is constructed as a tree structure (node tree). Among the nodes in
the node tree, the secondary relations map the node model as a network
structure. The concatenated association by relation name and relationship
key provides at least one unique pathname to reach a specific node from
either the system root (full pathname) or the current node. Figure 4.6 shows
an example of hierarchical node structure and pathname.

The properties for the nodes and relations are represented by attributes
attached to them. These attributes are used to store the data that describe the
information about the nodes or relationships.

The relation name and attribute name are provided either as

predefined or user-defined. With the set of interfaces to handle the node

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanw.manaraa.com

57

Q System Root Node)

USER(OM)
USER(]ONES) GROUP(TEAM _A) ; DEVICES
‘ ’ DIRECTORY(WORK)
JOB(B) DOT(LIBRARY) CRT(TTYO0)

S & S L

<:> Structural Node
O Process Node

File Node

~¢—— Primary Relationship

Node A can be referenced by pathname 'GROUP(TEAM_A)'LIBRARY

Figure 4.6. Example of Hierarchical Node Structure and Pathname

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

58
model, the node model can be organized to create a project-oriented
framework that may involve people, tools, activities, and data in a natural
way [CAIS 1986; Kramer et al. 1985; Lindquist 1988].

444 Process Management

The process is represented as a CAIS process node and provides information
about the running process in the node model. The CAIS interfaces support
the management of processes by spawning processes, invoking processes, and
creating jobs. Other services to suspend, resume, await, and abort are
supported. The necessary relationships and attributes are set while the
service routines are performed. The Figure 4.7(a) shows a typical node
structure after process creation.

The interprocess communication is supported by a piping mechanism
that employs queue I/O. Process synchronization is provided by await. The
solo queue is a file node whose content holds the data written by writer
processes and read by reader processes. The appropriate order of write and
read operations is managed by the CAIS. In this research, the solo queue
model is used to provide interprocess communication. Figure 4.7(b) shows
such mechanisms. Details of the other queue models such as copy queue and
mimic queue can be found in [CAIS 1986; Kramer et al. 1985].

44.5 Typings of CAIS Node Model of CAIS 1838-A Revision -

The node model in CAIS was revised in CAIS DOD-STD-1838A incorporating
the concept of typing. The nodes, relationships, and attributes are conformed
by type definitions. All type definitions are modeled with a node structure.
The required relationships and attribute details are forced to be created when
a certain type of node is created by the typing. The objects of the type in CAIS

are persistent. The CAIS revision-A allows mechanism}s for type change after

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

59

User Node

F
2 ‘i File Node representing program

executable_image o

(a) After SPAWN_PROCESS (N, F, INTENT, K, R) is performed

User Node

Root Process Node

) \ta\bl) / I
: \ ,/ executable_image
executablti_lmage N g executable_image
/ “‘. "’I \ /
Reading Queue s

., Writing to Queue

. ’
. ’

AN 4

processes sharing
same code

Queue File Node

(b) Process Nodes, Jobs, and Interprocess Communication

Figure 4.7. Process Node Structure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

60
the instances of the types are created. Possible inconsistency caused by the
type change may occur among objects of the type and the operations on them.
Specialization of the type is suggested to remedy this problem.

General requirements for the management of the types and objects are
not sufficiently specified in the CAIS revision-A, in which it is suggested that
the node model is to be typed and managed. However, the management of
the objects is not type-based, so it is the user's responsibility to correctly create
and manipulate the objects. The user-definable type is not supported, and
only the predefined types for the nodes, relationships, and attributes are
available. Type evolution by specialization is not flexible or rich enough to
provide typings for the various kinds of tool data in the software engineering
environment.

The CAIS provides a well-structured interface for building a type
system. The node model and process management support versatile tools for
a concurrent, persistent, and modularized environment for the type system.
We built the type system on top of the CAIS in this research.

4.5 Example: Software Testing Environment

This section demonstrates the capability of environment type definition for
software testing during the software development cycle. Software testing is a
complex process that involves many tools and data. The tools include a
processor to formulate a software specification, a test generator to produce test
programs and corresponding test data such as IOGen (which produces a token
list from a syntactically correct source code), and a test oracle to execute the

test program with the test data [Lindquist and Jenkins 1988].

— iz

e v me ¢ s am Lt @ s wn v S oo e 1 e e %4 cmmal e e e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

61

The tool data include the specification, the test objectives, the test
program, and the test data. These tool data are shared by the testing tools
such that one tool generates the data while the others use the data.

Tools for the Testing Environment

Our example consists of two tools: the Test Generator and the Test Oracle, as
shown by the schematic diagram in Figure 48. The human tester runs the
software and monitors the activity interactively. = The tester enters the
specification of the modules to be tested, selects the desired actions of the test
generator via an interactive input device, and records the results.

Test Generator

The Test Generator has three inputs:

1) the Source Program in the form of a syntax tree and a symbol table
generated by tools such as IOGen's scanner/parser (or in a form
determined by a compilation system),

2) the Specification in a structured form to contain the functional
requirements of the target software such as input requirements,
exception handling, and output requirements, and

3) the human interaction from the tester, who interactively selects the
desired action that is converted into an appropriate predicate form by
the tester.

The action part in predicate form is attached to the test objectives of the
given target software to generate the Test Program and the Test Data. The Test
Generator analyzes the target software, generating input and output
assertions in the form of a predicate tuple list. The next step selects tests from
the list and combines the desired output from the specification to form a test

case. The Test Objectives are a list of tuples of the following three elements:

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanw.manaraa.com

62

Internal Representation Specification -
of Source Program pecifi (Human Interachon)

Syntax Tree Text Interactive
Symbol Table Selection

| 4 Y
[_(__> Test Identification Action Selection,
+) Predicate Conversion
Symbolic Test Cases/

Execution Tree Input Conditions
Input Assertion & IC l oC l Action

Output Predicate
Test Selection)q—_

Test Objectives .
(IC,Action,OC) List of Tuple

A
_ Test Generator L Test Generation)

I) J

Syntax Tree Test Pr Test Data .
Symbol Table L—omlo8omt est Da List

v
(Test Oracle)

Ces/No

r

Output Specification

E Tool Data

™ Program Internal Data

Figure 48. Testing Environment Schematic Diagram

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com

63
Input Condition (IC), action (ACTION), and Output Condition (OC). IC is the
input assertion for the module ACTION, and OC is an assertion describing
the expected output. The Test Generator generates the Test Program for the
selected action of the target software using IC and ACTION and produces the
Test Data for the test program according to the specified input requirements
with human interaction.
Test Oracle
The Test Oracle is an automated tool that decides the correctness of the target
software by executing the test program. The Test Oracle executes the test
program with the test data and decides the correctness for the given test case.
It takes two inputs: Test Program and Test Data. It will execute the internal
form of the test program using the test data.
Tool Data for Testing Environment
This section turns from the testing process to a description of environment
types for the data shared by these tools. Figure 4.9 shows the entity-relation
diagram for these types.

The tool data Specification, Source Program, Test Objectives, Test
Program, and Test Data correspond to the entities SPECIFICATION,
SOURCE_ENV, TEST_OBJECTIVE, TEST_PROGRAM, and TEST_DATA_
ENV, respectively. The contents of each type are included within a rounded
rectangle. The circled numbers describe the typical sequence of the creation
of an instance for the environment type. The relations among the types are
described as directed arcs. The relations shown here are a minimal set to
relate the relevant tool types. Appendix A shows these type definitions in
detail using the environment type definition language described in the

previous section.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

(source_Env -2=7

»{ SPECIFICATION)

®
ram_of

8

Test_Pro,

oe‘% @ \

o!
‘e TEST_PROGRA@ Test_Program of { TEST DATA ENV &

K Test_Data_List J

k Test_Data_of >

[—

Environment Type (Entity) with Contents

@ Sequence of creation for entity
——® Relation

Figure 4.9. Testing Environment Entity-Relation Diagram

D TSOR — B Lt a2 v ot e o7 ¢ PR — — S

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanw.manaraa.com

65

Specification
The SPECIFICATION contains text that describes the requirements of each
action for a given module of the source program. Attributes such as the
number of items, the resource tool used to generate the specification, creation
date, update date, or size define the necessary information about Specification
as tool data. Relations link Specification components such as SOURCE_ENV
or TEST OBJECTIVE. Since a specification can have multiple source
programs or test objectives, the cardinality of these relations ranges from 1 to
many. The operation part of SPECIFICATION supplies all necessary actions
to link relations to other tool data explicitly and to query the information
encapsulated within the type.
Source Program
SOURCE_ENV inherits the contents, attributes, relations, and operations
from the generalized PROGRAM_ENV. It shares the contents and attributes
with supertype PROGRAM_ENV. However, it adds other special relations
emanating to SPECIFICATION, TEST_OBJECTIVE, or TEST PROGRAM.

SOURCE_ENV shares most of the properties with TEST_PROGRAM.
The supertype PROGRAM_ENV defines the common properties of contents
of entities such as SYMBOL TAB, which is another environment type
SYMBOL_TABLE. It also defines SYNTAX_TREE, which is defined inside of
PROGRAM_ENV type definition by the NESTS construct. When
PROGRAM_ENV imports the operations from the environment type
SYMBOL_TABLE, it redefines the operation of ADD_SYMBOL to
INSERT_TOKEN with a new parameter list. This change affects only this
type and its subclasses. |

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

66
Test Objectives
TEST_OBJECTIVE contains the list of tuples of input condition, action, and
output condition (IC, ACTION, OC). This list is a generalized list type using
CAIS_LIST_TYPE, which is defined in the CAIS. The TEST_OBJECTIVE is
used to store all possible test cases of the given target software. It stores the
input condition and output assertion for each test case produced by a symbolic
execution tree [Hantler and King 1976]. It is a database to be referenced when
the test program and test data are generated by an interactive command from
the human tester.
Test Program
TEST_PROGRAM is a specialized type of PROGRAM_ENV that shares its
contents, attributes, and relations. The test program for a given ACTION is
generated from a human command based on TEST_OBJECTIVE with the
desired output specification supplied from SPECIFICATION. The reference
to SPECIFICATION can be navigated through TEST_OBJECTIVE or
SOURCE_ENV indirectly since both types have unique SPECIFICATIONS.
Test Data
TEST_DATA_ENV contains the list of test data corresponding to the
parameter list for the given test program. It can have multiple sets of test
data for a wider test range. The TEST_PROGRAM allows multiple test data
sets by using more than one relation pointing to TEST_DATA_ENV.
Summary
By defining types for tool data among various tools and methods of using
them, it is possible to manipulate sharable resources with greater reliability in
a software engineering environment. The incremental definition of tool data

can be achieved by this modularity and by greater effort in the design phase.

SR I et T A LT " 8) 8 e 1 it Pt 1 vt i+ oot 1y %1 mmes comre y e o e e et <

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanw.manaraa.com

67
Both the specialization mechanism and dynamic visibility control provide
greater flexibility in tool design. The entity relation model with the object-
oriented paradigm in environment typing mechanisms greatly enhances the

reusability and modularity of software engineering environment data.

er. Further reproduction prohibited without permissionyzww.manaraa.com

5. DESIGN OF ENVIRONMENT TYPE MANAGEMENT

SYSTEM FOR SOFTWARE ENGINEERING ENVIRONMENT
This chapter describes the details of the design pfocess of the environment
type system. Our design is based on the CAIS environment although an
environment type system can be designed and implemented in various
environments. The CAIS was chosen as an underlying system because it
supports entity management capability, persistency of objects, and
concurrency, portability, and most of all because it is operational. Under
contract with U.S. Department of Defense, the operational definition of CAIS
is now running in the Computer Science Department of Arizona State
University. Ada was selected as a host implementation language because it
has powerful supports for modular development, tasking, and packaging, and
for its good PDL (Program Design Language) functions.

The type sysfem performs various functions in the management of
environment types, tool data, tools, and library. The management of
environment types and tool data is performed by the environment type
management system. This chapter describe the architecture and data flow of
the system. The focus of this chapter is to identify subsystem components and
their functions in order to build the environment type system in a
dynamically evolving environment.

51 System Architecture

The environment type management system is built on top of the CAIS as
illusirated Figure 5.1. The environment type management system manages
environment types and tool data. The type builder writes the environment
type definition code to create new environment types in a software

-engineering environment. The tool builder writes the tool code in the host

- o " T L T e e VA v s S s s o R Sl ML maewn e e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

69

Environment Type Tool Builder
Builder Tool Data User
4 . N\
Environment Env1ro.nment g
Type Definition{ {_ Type Library J Tool
Processor f Set of "\ | Compiler | [* ™| Tools
Tool Data
.
Environment Type Management System
interfaces interfaces
CAIS
Host Operating System
Host Machine

Figure 5.1. Architecture of the Environment Type System

——— e e b o= o L~ o T e Sl RS e = P

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com

70
language. The environment type builder uses the environment type
definition processor (ETDP) to process the environment type defirition code.
The tool writer uses the tool compiler to process the tool data management
commands in tool code. The environment type definition processor and tool
compiler are the basic tools used to process the environment types. The
environment type library and the set of tool data are managed by the
environment type management system.

5.1.1 Interrelationships of Tools and Tool Data

The environment type management system is an integrated system that
provides capabilities to define and catalogue new environment types,
instantiate the tool data from environment type, and manipulate the tool
data from the tool code in a consistent way. The environment type
management system allows both object management and entity
management. Figure 5.2 shows the interrelationship among various entities
of the environment type management system.

ETDP (Environment Type Definition Processor) catalogues new
environment types into a dynamic environment type library written in the
environment type definition codes.

The tocl compiler is a preprocessor that checks the validity of the use of
tool data according to their environment types as used in the tool code. The
tool compiler, then, generates code for proper tool data manipulation. The
ETLM (Environment Type Library Manager) manages the environment type
library to provide the necessary services for the environment types. The
conceptual domain of the environment type definition structures is called an
E_Type Definition World. The tool data instantiated from the environment

types are stored in the node model of CAIS. The TDM (Tool Data Manager)

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanw.manaraa.com

71

{ p ~
Environment Type
Definition Code Tool Code
e * L *)
ETDP Tool Compiler
\
catalogue
environment tyy reference compile/load

Environment Type Library

runtime

E_Type \ ’,'
Definition World

instance of ’/

requ&st service for
tool data

Tool Data 3

Tool Data 2

E_Type Instance World

Figure 5.2. Interrelationship Among Entities of the Environment Type

Management System

mwaae 4t t mre e e s ey . . L o o o

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com

72
provides necessary services for the tool data. The conceptual domain of tool
data structures is called an E_Type Instance World.

512 Dynamic Environment for Tool Data

During the execution of the environment type management system, the user
defines the environment types and instantiates the tool data from existing
environment types. The software engineering environment must be able to
support the environment type management system as its subsystem and
provide runtime capability to manage the environment types and tool data.

The environment types and tool data are objects that must be available
to many tools (sharable) and are still available after execution of the tools
(persistent). The ETDP and tool compiler are dynamic tools that run in the
software engineering environment. The environment type library providing
necessary type informations must be managed in a dynamic way to support
both environment type definition and tool data instantiation.

Once the environment type definitions are processed and catalogued in
the environment type library, another environment type can be defined by
inheriting properties of the environment types. Tool data are instantiated
from the catalogued environment types. Every activity, from environment
type definition to tool data use, must be done in a dynamic way. This
requirement is necessary to provide true reusability in software development
where users are free to define new environment types and use them to create
tool data and share them among various tools.

All objects, including tool data and environment types, must be
sharable and persistent among tools. To support efficient use of computing
resources and productive development of the software, it is best that tools be

the processes that are subject to the scheduling mechanism of the host

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

73
operating system. Yet the tools as processes must be able to share tool data
while they are executing.

5.1.3 Object Management System and Entity Management System

The environment type management system is an object management system
(OMS) that treats every entity as an object. It is capable of object creation, class
hierarchy, class inheritance, persistence, message management, and method
application.

The environment type management system is also an entity
management system (EMS) that manages all entities of the software
engineering environment in an entity-relation model. In this capacity, it is
capable of entity identification, relation definition among entities, and
attribute management.

The object of the software engineering environment can be viewed as
an entity for EMS while the same object can be defined as an object for OMS.
The environment type management system provides characteristics of both
object management system and entity management system.

52 Design of Environment Type Management System

The design process attempts to reveal desirable characteristics of the
environment type management system. The graphical notations used in this
chapter are based on the pictorial system description techniques of Buhr [Buhr
1984].

5.2.1 Requirements

Software engineering environment users generally fall into two categories:
environment type builders (environment type suppliers) and tool builders
(environment type users). The two distinct roles result in different activities

of environment type creation and environment type use. Accordingly, there

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanw.manaraa.com

74
are two distinct input sources: environment type definition code and tool
code.

An environment type definition code has a specification part and an
operational definition part (body) using the environment type definition
language (described in Chapter 4). Tool code includes tool data manipulation
commands that use environment type management services. The tool data
are the instance objects of the environment types.

Environment type definition code and tool code are processed in the
environment type management system. The environment type definition
library stores the environment types and is managed by the environment
type management system. The tool data are created and used in tool code;
they are dynamic and persistent objects managed by the environment type
management system.

The actual operations for manipulating tool data take place when the
tool codes are run. Any request for tool data operation is through a message
from the tool to the environment type management system, which handles
the message to initiate appropriate operations to the tool data. The set of
operations applied on the tool data is shared among all tool data of the same
environment type. A proper mutual exclusion among various calls for
operations from many tool data must be provided.

The environment type definition code and tool code are processed
during runtime of the environment type management system. The generated
tool must be able to access tool data during runtime of the tool.

The environment type library must be accessed only through the
environment type management system. The environment type library is

structured as a node model of CAIS. Although the behavior and structure of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

75
the environment type library can be implementation specific, all necessary
protection and query mechanisms must be provided. The tool data must be
autonomous, sharable, and persistent.

The run-time management of tool data is supported by object
management facilities of the environment type management system. The
type checking mechanism of the tool compiler references the environment
type library that is available during runtime of the CAIS.

5.2.2 Data Flow Diagram

The environment type management plays a central role in managing the
services and activities for tools using environment types and tool data. The
data flow diagram shown in Figure 5.3 describes high-level data flow among
several entities of the typed software engineering environment. It shows
only related entities such as the environment type supplier (environment
type building activity), the environment type user (tool programming), the
environment type management system, host language tools (Ada compilers,
linker, load and dispatch facility), and tools generated from the tool program
that include use of environment types by tool data. The environment type
library serves as a central repository for reusable environment types. The tool
data are conceptually grouped and managed by the environment type
management system.

Using the environment type definition language, an editor creates the
environment type definition code, which is processed by the environment
type management system to generate type structure and then catalogued into
the environment type library. The environment type management system

also generates environment type code that is host language (Ada) compatible

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com

76

a .
Editor for Ada Compiler

Environment Environment Type
Type Code Package Object

Environment Ty;;x
Definition Code Tool Code
Object

Environment Type Ada Library
Management System T
wi:onmmt Type
\o Environment Type
Editor for Library
Environment
Type User
Tool Data
l i’ Environment Type
Tool Data Package Object
message Tool Code
/ Object J
Tool in
executable
form
e, [Loady

get executed Dispatch

Figure 5.3. Data Flow Diagram for Type System

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

77
from the environment type definition code. The environment type code is,
in this research, an Ada package per each environment type.

The environment type code is later compiled and catalogued into the
Ada library. These object file images in the Ada library are used when the
tool code references the environment type. The operational definitions for
the environment types are translated into Ada code and encapsulated in
package structure by the environment type management system.

The tool code is written using the host language (Ada) using necessary
references to environment types and instantiation of tool data, and applying
the appropriate operations on them. Any properties of the environment type
use are checked statically by the environment type management system.
After the tool code is checked for validity of type use, the environment type
management system generates the augmented tool code which is host
language compatible. This code contains other codes to manipulate tool data
appropriately, that is, search objects, send message, manipulate data structure
for tool data, and so on.

The augmented tool code is later compiled and linked to generate an
executable form of the tool. During runtime of the tool, the actual creation,
use, and manipulation of the tool data are executed. Any reference to tool
data is managed by the environment type management system. The tool
sends messages to the tool data. The actual message traffic is controlled by the
environment type management system to decode message and effect tool data
status change.

The environment type management system consists of four
component systems:

1) the environment type definition processor (ETDP),

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanw.manaraa.com

78
2) the tool compiler,
3) the environment type library manager (ETLM), and
4) the tool data manager (TDM), as shown in Figure 54.

The ETDP takes the environment type definition code and generates
translated environment type code. It requests the ETLM to query existing
environment types referenced for the definition and catalogue new
environment types. The ETDP consists of the ETDP Lexical Analyzer/Syntax
Analyzer and the ETDP Code Generator. The ETDP Lexical Analyzer/Syntax
Analyzer processes input environment type definition code to check the
validity of any references to existing environment types and generates a
symbol table and a syntax tree. The ETDP Code Generator generates the
environment type code written in the host language. The environment type
code consists of the specification part of the environment type and the
operation definition part of behavior for the environment type. The
specification part becomes Ada package specification and the operational part
becomes Ada package body. When the environment type definition
references any environment types - for instance, any use of specialization,
include clause, or content type defined as environment type - the referenced
environment types are queried through the services of the ETLM.

The tool compiler scans tool code to check the validity of environment
type uses by querying the environment type. The validity of use of name,
operation, and parameter for the environment type is checked in this phase.
The tool code is translated to augmented tool code, which is written in the
host language. The augmented tool code includes the code to generate data

structures for tool data, send messages to tool data, and manipulate tool data.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

79

Environment Type
Management System
Defiattion Cote. Evronment
Type Code
Environment
Code Generator -
Environment Type
Environment Type ™o
Query Environment Type
Library Manager
operation
Environment Type operation \ \ monitor service
Query request

‘Tool Data
Manager

Environment
Type Checker

Tool Data
Tool Code

Tool Compiler

Tool Translator Tool Data

Tool Code

Augmented
Tool Code

Figure 5.4. Detailed Data Flow of Environment Type Management System

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

80

The ETLM is a concurrent entity used to provide the services of
querying and cataloguing the environment type. The environment types are
strictly managed only by the ETLM to support the integrity of environment
types. The ETLM catalogues the environment types by creating appropriate
data structures into the environment type library. The environment type
structure includes information about contents, attributes, relations, and
operations. The set of operations for each environment type is constructed as
a monitor process to provide necessary mutual exclusion in manipulating
tool data. Upon request of operation for the environment type, the ETLM
searches the monitor process for the environment type and returns it to the
requestor.

The TDM constantly receives and decodes messages sent from the tool
to arrange appropriate monitor services through ETLM. The message
contains the following information:

1) environment type name,

2) operation name,

3) parameter for the operation, and

4) tool data that the operation is applied on.
The TDM requests the ETLM to search the moniior process for the
environment type and arranges for the monitor process to run. When the
monitor process runs, the operation code is executed to manipulate the tool
data.
52.3 Structure Chart
The structure chart in Figure 5.5 shows the component subsystems in the
environment type management system. The control accesses and the data

flows among subsystems are designated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

EType Compile Command

8 Environment Type
Definition Code

Environment
Type Code

81

Compile_
EType_code

ETDP
program/tool

Tool Compile Command
3 Tool Code

g Augmented
Tool Code

Environment Type
Library Manager

Compile_Tool

Tool Compiler
program/tool

) EType Name I
e |
= e
Node_Handle
Get_Tool_Data
') [}
6,4’ Remove_Tool_Data
< I
Status_of Tool_Data
Tool Data g 1
eration Requests
op eq Tool Data
Manager
task

Figure 5.5. Structure Chart of the Environment Type Management System

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

A . bR L s ot an e et e [

82

The ETDP and tool compiler are defined as programs (separate tool) or
packages. The ETLM and TDM are defined as concurrent entities (task).
Interfaces for each subsystem and control accesses among subsystems are
defined. The ETDP takes environment type definition code from the
environment type compile command and outputs environment type code.
The tool compiler takes tool code and outputs augmented tool code. It calls
Read_EType to query the environment type.

The ETLM has entries of Read_EType, Write_EType, Dispach_
Monitor, and Get_Status. These entries are enclosed in a select construct to
take only one entry call at a time; this is because the environment type library
managed by these entries is shared among various service requests. The
Read_EType finds the environment type and returns the node handle for the
environment type structure.

Write_EType catalogues new environment type into the environment
type library. The Dispach_Monitor searches the monitor process for the
environment type to manipulate the tool data. The Get_Status returns the
status of the monitor process of the environment type.

The TDM picks up the messages of tool data operation requests.
Get_Message picks up the next available message from the message queue
and requests Dispach_Monitor of ETLM. Get_Tool_Data constructs a node
structure for the tool data of a given environment type. Remove_Tool_Data
closes the access of the tool data from the tool. Status_of_Tool_Data requests
Get_Status of ETLM to find the status of the monitor process of the

environment type.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

83

5.3 Environment Type Definition Processor (ETDP)
The ETDP analyzes the environment type definition code to create new
environment types in the environment type library. These environment
types are constructed in compliance with the CAIS node model and provide
all information about the type. The environment type definition language
supports full functions of the object-oriented mechanisms including type
evolution and polymorphism.

The ETDP consists of several subsystems; Lexer, Parser, EType Checker,
and ETDP code generator, and uses the Ada tools of Alex and Ayacc. Alexis a
lexical analyzer that inputs the regular expression of identifiers of the
environment type definition language. The output of Alex is a DFA
(Deterministic Finite State Automata) table. Ayacc is a compiler-compiler to
input syntax of the environment type definition language and output an
LALR parsing table.

Lexer takes the DFA table to process environment type definition code.
The output of Lexer is a symbol table and a token stream of given
environment type definition code. Parser takes LALR parsing table and
analyzes the syntactic information and returns a symbol table and a syntax
tree. EType checker inputs the symbol table and syntax tree and calls
Read_EType for any reference of the existing environment types. The
resulting symbol table and syntax tree of the EType checker is used in ETDP
code generator. The ETDP builds a node structure of the environment type
structure and calls Write_EType to catalogue it into the environment type
library. It uses EType_Name, EType_Node_Handle (to point to an
environment type node structure), Base (to point to a supertype node), and a

list of included environment type names to specify the location of the node

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

84
structure when it is catalogued in the library. Figure 5.6 shows the structure
chart of the ETDP.

The operational definition part of the environment type definition
code is translated to an Ada package body named after the environment type
name. The code for the package body is Ada code used to define operations
that are Ada procedures or functions.

54 Tool Compiler
The tool code written in the host language (Ada) references to environment
types by commands described in Chapter 4. The reference to the environment
type or the use of tool data can be any of three cases:

1) defining new tool data,

2) sending a message to the tool data, and

3) closing use of the tool data.

The tool compiler scans the input tool code to encounter any code
referencing the environment type or using tool data. Necessary type checking
must be performed, and the translated host language that manipulate tool
data must be generated and inserted into output code. Figure 5.7 shows the
subsystems of the tool compiler.

5.4.1 Environment Type Checker

Before the translation of commands manipulating tool data into the host
language, any references to environment types in tool code must be checked
in a static way. Any references to the tool data must be checked at runtime of
the tool since the tool data are runtime objects.

The operations on the tool data are translated to the codes to provide
message-sending through an interprocess communication channel. Actual

messages sent to tool data are picked up by the TDM during runtime of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

85

EType Compile Command
3 Environment Type Definition Code
Environment Type Code in Host
Compile
EType_code ETDP
o = Lexical Analyzer/
vironment Type Anal
V; Definition Code Syntax yz|er
<s—o DFATable
Lexer [
Alex
Symbol Table, Ayacc
Token Stream I
/
Parser M—.TALR Parsing Table
Symbol Table,
Syntax Tree
EType Checker ET; y;l)e_Name o> Query EType -
=%-0 EType_Node Handle
; Symbol Table
Syntax Tree
Y 4 Catalog EType
B
ETDP) EType Node_Handle,E o
Code Generator Type_Name, Base,
- J INCLUDES_List
; Environment Type Code in Host \\, EType_Node_Handle
Language
EType_Structure_B
uilder

Figure 5.6. Structure Chart of the ETDP

i A o Y bt = o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

Tool Compile Command

; Tool Code

g Augmented Tool Code in Host Language

Compile_Tool Tool Compiler
program/tool
3 Tool Code
g Augmented Tool Code
Query EType
Check ET b o EType_Node_Hlandle
 p— ec >
= EType Name o=
jeee- | Check_Structure
= Check_Operation
Code Scanner
f——| Find_EType
Environment
Type Checker

pe———m| Translate_Define
> Translate_Operations I
=—————_-| Translate_Close

; Error Log (Create_Tool_Data_Structure_Code)

Message
Tool Translator

* Error Handling

Figure 5.7. Structure Chart of Tool Compiler

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com

87
tool. The tool compiler must check the validity of the use of tool data
including the existence of named tool data, operation names, parameter
names, and parameter types. After the necessary type checking is completed,
the tool compiler generates codes to manipulate tool data.

The type checking facilities can be defined in the package of
Environment Type Checker, as shown in Figure 5.7. The tool compiler code
scanner calls Environment Type Checker to query necessary information for
applying environment types.

5.4.2 Translation of Tool Code
The includes statement enables the referenced environment types visible in
the tool code. The includes statement is translated into the Ada with
statement with a corresponding package name for the environment type.
The package name can be found in the Ada library, where all of the defined
environment types are registered as packages, to provide operational
definitions of the environment type from ETDP.

includes WINDOW; can be translated as

with WINDOW;

The define statement makes the tool data accessible from the tool. If
there is no instance object of the given environment type (the reference of the
environment type is new) in a given pathname, then a new tool data
structure is created. Otherwise, existing tool data of the given pathname are
opened under the given intent. After define, the tool can reference the tool
data.

The tool compiler performs the necessary type checking for the
reference to environment type and generates code to make the tool data

structure. To create this structure (store for the environment type), the tool

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

88
compiler generates code to call Get_Tool_Data of the TDM. The call is a task
entry. When the TDM accepts Get_Tool_Data, the actual structure of the tool
data is constructed. Necessary translation includes Etype_Name, Pathname,
Intent, and Tool_Data_Node_Handle. The define command

define my_window:WINDOW (" 'USER (JONES) ' WORK", WRITE) ;
can be translated as task entry call
TDM.Get_Tool_ Data

(my_window, "WINDOW", " 'USER (JONES) 'WORK", WRITE) ;

The node handle my_window is a local identifier in the tool code that
references the tool data structure, which is global and persistent to all relevant
tools. Other tools may open the same tool with the same pathname but with
other name for the node handle. The actual references to the tool data,
however, are directed to the same node structure since tools share the same
pathname.

The purpose of the above define statement can be interpreted as
follows: the tool opens tool data of the abstract environment type WINDOW
in the pathname of WORK directory of user JONES to write some data into it.
The actual translation can be performed only after checking the environment
type WINDOW.

The send statement is used to apply operations to the tool data. Send
takes the operation name with corresponding parameters for a defined tool
data name. The tool compiler performs type checking to verify the validity of
the operation and parameter types for environment type of the tool data.

For example, environment type WINDOW has an operation of
operations

procedure scroll (lines:in integer);

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com

89

The tool code defines tool data my_window as

define my_ window:WINDOW;

and applies the operation as
send my_window.scroll(5);

The tool compiler checks the validity of the operation name "scroll"
for the environment type of the tool data "my_window". Then, the tool
compiler checks the validity of parameter "5" against the formal parameter of
operation "scroll", which is integer. The result of the operation "scroll" will
be applied on the tool data structure identified as node handle
"my_window". The resulting translation will be a code to write a message to
the message queue using CAIS queue_io. The tool data node handle,
environment type name,‘operation name, actual parameter, and kind of
operation are parameters of the queue_io's write interface.

queue_io.put (my_window, "WINDOW", "scroll", "5", "procedure") ;

During runtime of the tool, the message will be written into the queue
file; the TDM will pick up the message and decode it to allow the monitor
process to execute the operation "scroll" defined in the environment type
"WINDOW".

If the operation is defined in the inherited environment type, then the
tool compiler must find the operation from the appropriate environment
type and translate the target tool data structure accordingly. For example, if
the environment type "WINDOW" is a specialized type of "TEXT_FORM"
and one of the operations, "APPEND_CHARACTER", is inherited to
"WINDOW?", then tool code using "WINDOW" can manipulate tool data of
type "WINDOW" with "APPEND_CHARACTER". The tool compiler, in
such a case, must search for the operation "APPEND_CHARACTER" in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

90
environment type structure to decide the correct data structure to manipulate.
Once the environment type for the operation is found, the operation should

be applied to the corresponding type's stores in the tool data structure.

environment type TEXT FORM

procedure APPEND CHARACTER (C:in character);

end TEXT FORM;

environment type WINDOW specializes TEXT_FORM

end WINDOW;

——= tool code includes WINDOW
define my window: WINDOW;

send my_window.APPEND_CHARACTER (“"A");

In the above example, the tool compiler decides where the operation
"APPEND_CHARACTER" must be applied in the node structure of the tool
data "my_window". The correct place of the operation applied is the
specialized area of the tool data "my_window" since the operation is defined
in supertype "TEXT_FORM". The details of the node structure for both

environment type and tool data are described in the following sections.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

91

When an operation of the send statement is a function or includes out
mode parameter, the tool compiler must prepare the appropriate store for
receiving the result of the function. The type compatible store must be set up
so that augmented tool code can use it.

The close statement is used to declare the end of tool data use. Once
the tool calls close, it cannot apply the send operation to the tool data without
another define statement. Close takes a tool data node handle and can be
translated as a CAIS close statement for this node handle. Even though one
tool closes the tool data, other tools or other parts of the same tool may still
reference the tool data. The actual closing of the tool data (such as
deallocation of tool data structure) will be postponed until all uses of the tool
data are closed. The TDM handles actual deallocation of the tool data
structure dynamically upon request of close to remove the tool data.

54.3 Operation Dispatching

Operations for the environment type are defined in the environment type
definition. The data structure (value store) of the environment type for
defined tool data is constructed for each define statement. In other words,
one environment type can have multiple instance objects of tool data. Each
tool data has a different value status even though their structures are
identical for the same environment type.

Operations defined in the environment type are used to manipulate
the value store of tool data. As an autonomous entity, the tool data have a
concurrent process called a monitor process to manage the operations defined
for each environment type. The monitor process controls scheduling of the
operations for all instance objects of tool data for each environment type. The

monitor process is attached to each environment type structure since the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

92
codes of the operations are shared resources among all tool data of their
environment type. Only one of the operations can be allowed to execute at a
time.

The tool data are autonomous entities of abstract data. They must be
available to all relevant requests for the query of its encapsulated data. All
communication between the tool (requestor) and tool data (requestee) is
handled through the message. From the viewpoint of tool code, the tool
sends a message to the tool data, which receives the message and decodes it to
apply the requested operation to the data. However, in a physical schema,
the message communication is handled through the message queue
management. When tool code contains the code to send a message to the tool
data, the tool compiler translates it to the proper code for writing it to the
message queue. The message written to the queue is picked up by the TDM,
which is constantly receiving the next available message from the message
queue. The message is decoded and causes the monitor process to execute the
operation to manipulate the tool data value. The mechanism of message
management is described in Figure 5.8.

The message queue can be implemented as a solo_queue of CAIS that
resembles a ring buffer. The message is selected on the basis of first-come-
first-serve.

5.5 Environment Type Library Manager (ETLM)

Environment types are stored in a central repository called the environment
type library. The environment types are reusable objects to construct another
environment type by user during execution of software engineering
environment system. The environment types catalogued in the environment

type library are managed by the ETLM, which handles queries and

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanw.manaraa.com

93

Tool Data
Manager

Message Queue Cause Monitor to executt

Virtual Access to Tool Data Operation
'
L}
]
1}
]
1

Operation manipulates Tool Data EType

Tool Data > P yp
Monitor

S5} Operation Name, Parameter, and Target Tool Data Node
Handle

Concurrent Entity
(Process or Task)

Data Structure

Figure 5.8. Message Management among Tools and Tool Data

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanw.manaraa.com

94
catalogues new environment types. Operations defined for the environment
types are stored as shared resources to manipulate tool data for corresponding
environment types. The ETLM schedules a monitor process that manages
operations of the environment type instances.

The ETLM has four basic services: Read_EType, Write_EType,
Dispatch_Monitor, and Get_Status. Interfaces for the ETLM are described in
Figure 5.9. The ETLM is an autonomous entity (defined as a task) that
provides services to various sources of requests from other programs or tools
running in the environment type management system. The interfaces of the
ETLM share the environment type library so that they are enclosed by the
select clause of the task.

Read _EType searches the environment type library for the
environment type structure using the environment type name
(EType_Name) and returns a node handle for the environment type
structure (EType_Node_Handle). This interface can be used to find the
existence of the named environment type or details of the environment type
structure. The search will navigate relationships from the node BOTTOM,
which is used to collect every environment type defined in the environment
type library. The environment types have unique environment type names
that are used as keys of the primary relationship "E_TYPE_DEF".

The environment type lattice is shown in Figure 5.10. The node TOP is
the root of all environment types defined. The node for each environment
type has a secondary relationship, "specializes_to", that emanates from the
supertype node pointing to it. The inheritance structure using the
relationship of "specializes_to" constructs a general type lattice structure. The

secondary relationship "includes" provides visibility to search any inherited

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

95

Read_EType

Write_EType

Apply Operation
PPy 4/ Dispatch_Monitor Attach_EType
EType_Name,
Operation_Name, / Get_Status I
'II)‘ool_l?aet:_Node_Handle, 1 (Search_O tion)
Environment Type
Query Monitor Status Library Manager
task

Figure 5.9. Structure Chart for ETLM

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanw.manaraa.com

96

System_Root

E_TYPE_DEFINITION/

\Y
o>
o’*‘@v
(4A)sapnour

(5)Jaq dAdAL &

E_TYPES_DEFINED

= Primary Relatioship

——— Secondary Relatioship

Figure 5.10. Environment Type Lattice

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com

97
properties for the environment types. For example, the environment type
"E" in Figure 5.10 is specialized from "S" and uses "EC", "ER", and "S" for
definition. The environment type "E" inherits every property for "S" as
designated by the relationship "specializes_to(E)". The environment type "E"
uses the "EC" to define some of the content field of it. So, the properties of
the "EC" are inherited to the content of "E". The environment type "ER" is
used to define the relation of the target for "E". No property of "ER" is
inherited to "E".

Multiple inheritance can be achieved by taking more than one
"specializes_to" relationship as "X". Every environment type node has the
primary relationship "E_TYPE_DEF" emanating from node BOTTOM to it.
To search the named environment type structure, the ETLM navigates
relationships "E_TYPE_DEF" from node BOTTOM. The environment type
library is constructed to resemble the type lattice structure. The representation
of the type lattice structure can be an entity-relation model using the CAIS
node model, as shown in Figure 5.10.

Write_EType catalogues a new environment type to the environment
type library. Information defined in the environment type definition code is
interpreted to construct a node structure as in Figure 5.11.

The environment type structure is constructed around the structural
node (environment type node), which has a primary relationship
"E_TYPE_DEF" with a key using the name of an environment type
emanating from node BOTTOM. The secondary relationships
"specializes_to" emanates from the supertype environment type node if the

environment type is a subtype. All environment types used for definition, as

A L 3 b - et S8 saeeams o = e e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

98
System_Root

E_TYPE_DEFINITION

E_TYPES_DEFINED

N

node structure for N

o A (E_Type_Name=>"E",

Formal Parm=>(..), ..)

S &
&S g«é‘ N Q\C
S ¢ %
25 &
Eo® &

)
% A(Relation_Name:S’R",
7\
¥) Target=>("ER",....),

Q’%\ Relation_Attribute=>*note,
Cardinality=>(1,3),
Predefined=>No,

(Content_Name=>"C2", . Primary=>No)
Content_Type=>"EC") Monitor

A eXeCUBbIe tmags ! Code

=
((Operation_Name=>"op1",
Operation_Kind=>Proc,
Formal_Parm=>(),
Return_Type=>""),
A (Operation_Name=>"op2",
Operation_Kind=>Func,
(Attribute_Name=>"A", Formal_Parm=>(("V1","integer",In_Mode),
Attrtibute_Type=>"list_type", ("V2","boolean",InOut_Mode)),
Attribute_Value=>"") Return_Type=>"EC"))

*note : Relation_Attribute has identical attributes as in the attribute definition.

Figure 5.11. Node Structure for Environment Type Definition

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

99
in the includes statement, are linked by secondary relationship "includes"
that emanates from the new environment type.

The contents of the environment type are built as structural nodes for
“cont" using primary relationship "CONTENT_DESC" with the key using
content field names. The name and type of the contents are stored as CAIS
attributes of the content nodes. If the content type is generic, the actual type
name bound in run-time will be assigned by an actual type parameter when
the tool data are instantiated.

Attribute fields of the environment type are constructed as attribute
nodes, "attb", using the primary relationship "ATTB_DESC" with key using
attribute names. Attribute name, type, and initial value are stored as CAIS
attributes of the attribute nodes.

Relation fields are constructed as relation node, "rel", using the
primary relationship "REL_DESC" with key using relation name. The name
of the relation, name of the target environment type, relation attributes,
cardinality, and other information are stored as CAIS attributes of the relation
node.

The set of operations for the environment type is structured as a
process node tc make the monitor process node, "monitor". The information
for each operation such as name, kind, and formal parameters of the
operations are stored using CAIS attributes for the monitor process node. The
executable image of the monitor process is stored in the file node "code"
using the primary relationship "BODY_DESC".

The nested environment types are structured using the same node
model and are attached to the environment type node by the primary

relationship "NESTS" with key of nested environment type name. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

100
nested environment types are not visible outside the definition of new
environment type. Therefore, the nested environment types are not linked
to node BOTTOM.

Dispatch_Monitor searches for the operation of the tool data of
environment type name and dispatch the monitor process stored in the
environment type structure. The search takes place as follows:

1) find the environment type name for the tool data,

2) find the operation name from monitor process node of the
environment type structure,

3) if not found in step 2), find in the nested environment type,

4) if not found in step 3), find in the environment type of the content
inherited,

5) if not found in step 4), find the supertype of the environment type and

repeats steps 2) through 5).

After the search, the name of the environment type defining the
operation is returned and the monitor process node is set to run in the next
process scheduling. The monitor process will decode the message to get the
name of the operation and parameters and apply the operation to the tool
data. The environment type structure found in the operation search gives
information about which part of the tool data structure is the target of the
operation application.

Get_Status finds the status of the monitor process for the named
environment type. The status can be defined as the status of the CAIS
process. This interface is used to query the status of the monitor process by

tools.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

101
5.6 Tool Data Manager (TDM)
Tool code written in the host language (Ada) includes commands to manage
the tool data such as defining a new tool data structure, closing the tool data,
sending messages to the tool data, and querying the status of the monitor
process. These commands are translated by the tool compiler to generate
necessary actions during runtime of the tool. The action taken during
runtime requests the appropriate services from the TDM, which include:
Get_Tool_Data, Get_Message, Remove_Tool_Data, and Status_of_Tool_
Data. These interfaces are shown in Figure 5.12. The TDM is an autonomous
entity such as an Ada task or process to service various requests from tools in
runtime.

Get_Tool_Data is requested from the define command. It constructs a
new tool data structure under a given pathname. To build a node structure
for the tool data, the TDM constructs all the stores for a designated
environment type as well as all inherited environment types. The stores for
the environment type used in content fields and NESTed types are also
necessary. Although some of the supertypes can be shared among many
environment types, actual tool data must carry individual stores for all data
including a store for the inherited types. Based on such a concept, the tool
data structure has been designed as in Figure 5.13.

The tool data structure consists of tool data node, stores for the
environment type defined, stores for the NESTed environment types, and
stores for the specialized environment types. The store for the specialized
environment type recursively links stores for its supertype. If content is
defined as an environment type, the store for the type is constructed in the

same way. In Figure 5.13, the shaded structural nodes are stores for the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

102

Send Command

e

ol / | .
. L Dispatch_Monitor
Get_Message l 4 .
Define Command - EType Name o-»
EType Name, 0+ i Get_Tool_Data l ~=-0 Monitor_Status
Pathname, Intent l Remove_Tool_Data 7 /
Get_Status
Status_of_Tool_Data 7 - >
/ EType_Name, o>
Operation_Name,
Parameter,

Tool_Data_Node_Handle

Tool Data
Status Query Manager
task

Figure 5.12. Structure Chart for TDM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

103

SER(Jones)

TOOL_DATAMy_E)

Node_Handle Store for Attribute
My_E

((Attribute=>value_of_A),
&(Attﬁbute_Nested»value_of_An))

((Attribute=>value_of_A))

Store for Content of My_E
(type N nested)

Odata for Cs2

A\ Store for Content of My_E
(type S specialized)

Store for Content b
(type E)

(N);o‘aauif;sug

a~——p- Primary Relationship

Definition Structure ———» Secondary Relationship

Figure 5.13. Design of Node Structure for Tool Data

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com

104
environment types while the white structural nodes represent stores for the
regular Ada type.

All structural nodes representing stores for the environment types
have a secondary relationship, "instance_of", to the node-defining
environment type used. The primary relationship "CONTENT_STORE"
links content nodes representing content fields of the environment type. The
primary relationship "CONTENT_STORE_NESTED" links structural nodes
representing stores for the NESTed environment type used. The primary
relationship "CONTENT_STORE_SPECIALIZED" links structural nodes
representing store for the specialized environment type node.

Attributes of the environment type are stored as CAIS attributes for
tool data node. Attributes for the inherited environment types (type of
content field, NESTS, and specialized environment type) are stored in their
nodes individually. When new tool data are instantiated, their structure is
constructed and their primary relationship "TOOL_DATA" is set from a node
named as the pathname. The intent of the tool data node is set to the given
intent parameter. After all construction of the tool data component is
finished, the node handle pointing to tool data node is returned.

To create a tool data structure, the tool compiler references the
environment type structure through the services to ETLM (interface of
Read_EType). The action includes necessary CAIS calls (such as
CREATE_NODE) to make each data store for the content and attribute. For
example;

define my window: WINDOW (" 'USER (JONES) 'WORK",WRITE) ;

can result in the following steps:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

105

1) create a new tool data node in the given pathname with the given
intent,

2) create the data store for the content fields of the environment type
WINDOW,

3) create the data store for the attribute fields of the environment type
WINDOW,

4) create the tool data node structure (including tool data node and data
store for content fields and attribute fields) for any nested environment
type of WINDOW,

5) create the tool data node structure recursively for specialized
environment types (supertypes) of WINDOW, and

6) return the node handle for the tool data node.

If a tool data node structure is present, then the code generated will be
that to open the tool data node with the given intent. During the runtime of
the tool, the success of the node open for the tool data depends on the access
mechanism of CAIS. CAIS provides a necessary locking mechanism for node
open. The interfaces of the TDM are enclosed in a select construct of the task.

Get_Message picks up new messages from the message queue. This is
done by CAIS QUEUE_IO. The names of the environment type of the tool
data and the target tool data node handle are decoded, and the TDM requests
service of Dispatch_Monitor of ETLM.

Remove_Tool_Data closes the node handle for the tool data. The last
request the Remove_Tool_Data deallocates the node structures of the tool
data.

Status_of Tool_Data requests Monitor_Status of the ETLM for the

given environment type name of the tool data.

e e T - AT T g © s Tt L ot tr s g7 s e 11 it e e o0 g

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

106

6. ANALYSIS OF THE TYPED SOFTWARE ENGINEERING
ENVIRONMENT

A typing mechanism for the software engineering environment has great
potential for improving the quality and productivity of software
development. Dynamic evolution of environment types are important to
support user definable types during runtime. The software engineering
environment can be most useful when it is equipped with such a type system.
However, implementing such a system is not an easy task. This chapter
examines the considerations necessary to implement the type system for the
software engineering environment.

The analysis in this chapter has been done for several reasons: to
identify procedural factors of software development in a typed software
engineering environment, to assess the pros and cons for using typing
mechanisms in a software engineering environment, to find feasibility and
compatibility in the implementation of a type system for a software
engineering environment, and to estimate potential contributions to the
software development using a typing mechanism.

The method taken in this analysis is based on qualitative information
because of a lack of experimental data on working systems that use the typed
software engineering environment. Although the analysis is based on
informal knowledge, it is believed that the typing mechanism has a great
potential to contribute to software engineering both in theory and practice.

The categories of the analysis consist of

1) a use analysis of the typed software engineering environment from the

user's viewpoint,

e e teem e e PR T T e AT . L1 S T 8. Ao oot L &) O he® T oot e i+ 1 et ooars Wb 2t oo heaerene - o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

107
2) an implementation analysis of the typed software engineering
environment from the developer's viewpoint,
3) quality improvement aspects, and
4) productivity improvement aspects.
6.1 Use Analysis : User's View
Once the typed software engineering environment is established and a proper
system is installed to support such an environment, software development
roles (project management role, configuration management role, program
development role, environment adoption role, and so on) are affected by the
dynamic typing mechanism of software development. Programs such as tools
or applications are composed of tool data using environment types, which
evolve dynamically. The evolution of environment types includes
cataloguing new types, specializing existing types, and deleting obsolete types.
Such a new parédigm can change the existing practice of software
development. As the members of a software development project use such
typing facilities for their own needs, there are several possible impacts. From
the viewpoint of users who create/supply new environment types as well as
those who build tools or applications, there are several useful guidelines.
6.1.1 Guidelines
6.L11 Guidelines for the Environment Type Creator
The environment type creator designs and implements new environment
types and catalogues them into the environment type library. As the
environment type management system supports dynamic environment type
creation, user-definable environment types can be created in the system
dynamically while the predefined environment types can be created in static

manner.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

108

The environment types are important objects shared by many tools.
New environment types must be designed well enough to be standard yet be
long-lasting in a software environment. The environment type creator must
meet the following criteria when designing new environment types:
1) Environment types must be stable.
Environment types are used to instantiate tool data or to define other
environment types. The tool data carrying information among tools are the
abstract data in environment system. Once catalogued, the modification of
the environment types is not desirable because changes to existing
environment types can cause undesirable side-effects to instantiated tool data.
Therefore, the environment type creator must build new environment types
with extreme care, which requires detailed analysis of and experience with
such environment types.
2) Environment types require good testing.
Once a new environment type is designed and implemented, thorough
testing is required prior to cataloguing the environment type into the
environment type library. Necessary documentation regarding the new

environment type must be attached to provide guidelines for use, exceptions,

e

and descriptions of the interfaces. A strong configuration management effort
is necessary for newly developed environment types because they must be
reused among many programs.

3) Environment types must be well-designed objects.

The environment type creator must be motivated to design the environment
types in an object-oriented fashion. An environment type is an autonomous

and persistent object providing both the necessary properties about type and

operations required to manage tool data of the type. Users of environment

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

109
types use these objects in object-oriented development. To support object-
oriented development, the environment types must be well-designed objects
themselves, providing all the necessary properties and operations with the
independency from tool and persistency to keep the state of the objects.

4) Environment types must provide standard interfaces for tool data.
Environment types provide all operations required to manipulate their tool
data. These operations are interfaces that serve as standards of methods that
are applied to the object. Every tool or application uses this standardized set
of operations to manipulate its tool data. As such, the operations must be
rich, sufficient, robust, and efficient. The environment type creator is the
only person who sets such a standard for the future user of the environment
type. By restricting the manipulation of tool data (by allowing given sets of
operations only), the interface to tool data can be consistent, that is, the
operations defined in the environment type can be the reused among tools in
a consistent manner.

5) Environment types must support good abstraction.

Environment types are used to provide better modularity and abstraction for
shared data structures and operations. The level of abstraction must support
conciseness and generality to support widely used tool data. More specific
types can be developed from general environment types as necessary. The
environment adaptor plays an important role in adapting generalized
environment types (in higher levels of the type lattice) and bringing new,
specialized environment types for project-specific purposes. In such cases, the
environment type adaptor creates a new set of environment types in the

project-specific environment type library. In any level of type creation, the

e B i - R — = T Tt . o 8 e b i e ramimes e n e e s b e e+ ©

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanw.manaraa.com

110
environment type creator must provide an appropriate level of abstraction
for the environment type.

The explicit polymorphism of this typing mechanism helps such
environment type development with excellent abstraction. The generic clause
of the environment type definition provides a mechanism for defining
environment type with type parameters. The project-specific environment
type using actual type parameters can be defined later. Such parameterization
gives the environment type creator more flexibility to tune to the best level of
abstraction.

6112 Guidelines for the Environment Type User

The user of the environment types - the software developer for application
software and the tool builder - develops software for tools or applications
using catalogued environment types in the environment type library. The
environment type creator also uses existing environment types to define new
types and to write the code part of the operations.

When environment types are used, software development can be
improved in several ways as discussed in later sections (sections 6.3 and 6.4 of
this chapter); however, the software developer must use the environment
types for their software development. When developing software using
environment types, the following guidelines are suggested.

1) The environment type must be used as much as possible in a project-wide
scope.

Without environment types, the developer must design data structures and
relevant procedures. When these data structures are shared with other

software, the developer must maintain consistent control over them. To

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

111
integrate several tools, it is necessary to maintain the consistent management
of tool data among them.

The environment types provides necessary codes for the management
of the tool data used in the objective software as the reusable software
module. With the encapsulation and abstraction, the manipulation of a tool
data is forced to be consistent. The reusability can be greatly enhanced by using
environment types.

Both tool builder and application programmer must be highly
motivated to use the available environment types. Yet development efforts
for common data structures among various tools can be eliminated by using
environment types. Accordingly, management efforts are necessary to enforce
and reward as much as possible the use of environment types.

2) The user of environment types must learn the standard interface for the
environment type (operations).

To use the existing environment types, it is necessary for the user to learn
about their functions. To make this task easy, the environment type must be
designed well enough to provide the necessary information about the
structure and behavior of the environment types. In the beginning, it can be
a burden for the user to learn environment type use, but one can be more
productive once familiar with it.

3) Object-oriented development must be encouraged.

Since the environment types are objects, the object-oriented development
methodology is highly recommended for the productive software
development using the types. Tools or application programs use these
environment types as objects. The user of the environment types must be

encouraged to follow an object-oriented paradigm to design and implement

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

112
the software. The typed software engineering environment enhances object-
oriented methodology with more automated support. Management efforts
must provide necessary motivation to use the object-oriented development.
49) More parameterized programming must be supported for software design.
To achieve maximum use of environment types, the design for the tool or
application program needs to be highly parameterized. The general design
criteria of cohesion and coupling can be applied. More modularization of
design must be supported. The object-oriented design can provide such
methodology.

6.1.2 Pros and Cons in using Environment Type System

By using environment types in software development process, the developer
can enhance the reusability of software tool data, which results in less object
size of the software system, and leads to reliable and efficient software
systems.

Through the environment type management facilities provided by the
software engineering environment, the integration of more tools is feasible
and easy, thereby the developer can select the best tools for a specific purpose
and phase of the software development. More powerful development
activities can be achieved by integrating good tools smoothly. Alsc,
developers can concentrate on their expertise area without concern over
developing interfaces of tool data. This results in more productivity.

The entity management facility supports the entity-relation model.
This facility can provide systematic services to map real-world data with more
manageability. More powerful documentation and source program

management can be achieved with an appropriate model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

113

The environment type management facility is an added layer between
the host operating system and user. More computing resources may be
required and the possible system slowdown can be expected. However, the
benefits from the typing mechanism can easily compensate for this cost
during software development.
6.1.3 More practical support for the Object-Oriented Development of Tools
The typing mechanism of the software engineering environment provides
dynamic type evolution, management of autonomous objects, message
handling through the message queue, concurrency for the tools, and
persistency. Such a facility has been crucial in implementing the true object-
oriented system. This environment type management system provides the
practical support for object-oriented development in the software engineering
environment. By using the environment type system, tool data can truly
represent functions of the real world objects.

The environment type has autonomous control over tool data objects.
Tools send messages rather than sending control to tool data objects. The
messages are handled by the environment type management system
independent of the tools. Tools are concurrent entities in the environment
system. Therefore, all entities of environment type, tool data, message, and
tool are independently controlled to provide true autonomous management
of objects.

The type inheritance supports full inheritance through specialization,
partial inheritance through content inheritance (content field defined as
environment type), and multiple inheritance using more than one

environment types specialized. Inter-application communication is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

114
supported through tool data. The environment types are not language-
specific and are therefore independent of the compiler.

With abundant tools developed using tool data objects for each phase
and activity of the software development, a good object-oriented
development can be achieved. When equipped with a typing mechanism,
the environment system is an underlying system to provide the necessary
and sufficient facility for an object-oriented design methodology in a
systematic way. It is the user's responsibility to enrich the environment with
proper tools for object-oriented development.

6.2 Implementation Analysis: Type System Builder's View

To build a software engineering environment system with a typing
mechanism, it is necessary to consider several factors. The analysis in this
section examines the necessary requirements to implement a typed software
engineering environment and reveals the feasibility of implementing such a
system in a software engineering environment. The host language and
underlying support system chosen provide a powerful set of interfaces
although they have potential compatibility problems. For implementing a

type system in various environments with host languages other than Ada,

environment type definition language are examined.

6.2.1 Feasibility Issue

The typed software engineering environment used in this research can be
implemented in many ways. To provide a variety of facilities discussed in
this research such as dynamic type evolution, object management support,
entity-relation model, persistency, and concurrency, it is necessary for the

host’s underlying system to provide and support the powerful resource

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

115
management facilities of concurrency, shared memory, and the portable
environment. These facilities are basic building blocks for constructing a type
system in the software engineering environment.

6.21.1 Concurrency and Shared Resources

To support dynamic evolution of the environment types in the software
engineering environment, both the definition of the type and instantiation of
the type must be performed in the environment during runtime. The
environment type creator defines new environment types using the
environment type management system while the environment type user
instantiates tool data from the existing environment types.

The type system for the software engineering environment includes
various environment objects:

1) the subcomponent systems of the environment type management
system such as ETDP, tool compiler, environment type library
manager, and tool data manager,

2) the environment type monitors for each environment type catalogued,
and

3) the tools. Every environment object is the runtime object, which runs
as an independent, yet concurrent, entity.

Concurrency support for the software engineering environment is
vital in order that the environment objects implemented as concurrent
entities can be invoked dynamically. To provide concurrent objects of the
environment types, the software engineering environment should provide a
rich facility such as CAIS. The interprocess communication facility is also

necessary to provide message-handling independently of the tools.

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanw.manaraa.com

116

The concurrency of the environment objects must be supported by a
process level, not a task level. If these environment objects are Ada tasks, the
type system for the software engineering environment can provide only a
predefined number of tools and environment types that cannot meet our
objectives to define the environment types and tools dynamically.

The environment types and tool data are shared resources in the
software engineering environment. To provide an appropriate resource-
sharing mechanism among concurrent objects, it is necessary to support the
access to common data structures of the node model for environment objects.
This can be implemented in many ways, including file systems and shared
memory management.

It is our observation that both requirements - concurrency and shared
resource management — are available in current programming technology.
The typing mechanism for the software engineering environment can
facilitate such requirements without much difficulty.
6.2.1.2 Portability of Environment
When the environment types and tool data are distributed over different host
environments, it is necessary to have a common environment type
management system. Such a managemeni system is hosi-environment-
dependent although the interfaces to the environment type usage must be
consistent. A portable environment such as CAIS provides consistent
interfaces among different host systems to support common structures on top
of CAIS. The type system for the software engineering environment must be
built on the portable environment to support consistent interfaces.

Portability is also important to distribute tools or tool data developed in

one software engineering environment to another environment. The tool

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

117
data used in one environment need to get the support of their environment
types in a different environment to maintain consistent behavior. The
environment types as environment objects must be transportable. In fact,
many of the environment objects such as environment types, tool data,
environment type library manager, and tool data manager are required to be
portable. The portability of the underlying environment for the
environment type system can guarantee the good portability of those objects.
6.2.2 Compatibility Issue
In this research, Ada has been used to implement the environment objects,
and CAIS was the underlying system on top of which the type system was
built. Ada provides strong typing with a static binding mechanism, packaging,
and tasking. CAIS provides well-defined interface sets for a transparent and
source-level portable environment.

The type system for the software engineering environment can be
implemented using a different host language and host environment.
However, it is important to examine the compatibility of the environment
type processing languages which are the environment type definition
language and the tool data manipulation language, with the host language
and environment. There can be potential difficulties in implementing the
type system because of rigidness of the host language, lack of an abstraction
mechanism in the host language, lack of packaging and specification
capability, or lack of concurrency and portability support of the host
environment. The required characteristics for the host languages and host

environments to support compatibility are examined below.

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanw.manaraa.com

118

6.2.2.1 Host Language
To improve software quality and productivity, a programming language
evolves to provide more automated support to the software developer. Some
of this evolution results in strong typing, static binding, packaging, object-
orientation, and specification capability with an abstraction mechanism. The
benefits from using Ada such as strong typing, static binding, packaging, and
modularity must be preserved where the dynamic environment type
management can augment the power of Ada for the software development.

Ada supports strong typing to give the compiler more information to
process source code at compile time and ‘to let the programmer avoid
potential errors in earlier phases of software development. The strong typing
of the host language makes the environment type processing language less
compatible because environment types are not the types of the host language
and eventually need to be represented in the host language types. The type
casting such as coercion and unchecked type conversion of Ada can be a tool
for the host language compatible representation for the environment types. It
is important that the host language has strong typing with a powerful type-
casting mechanism to maintain both productivity support and compatibility.

Static binding of the host language is also an important factor in
supporting a productive software development. The dynamic definition and
use of the environment types must be supported with dynamic binding of the
types in the software engineering environment. The compatibility problem
between two different binding stratégies must be resolved in an appropriate
way. The environment type library plays an important role to manage
dynamic entities. At compile time of the environment type definition code,

the ETDP uses the environment type library manager to get dynamic services

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

119
for the query and catalogue of the environment types. Also, the tool compiler
uses the environment type library manager in compile time to generate
augmented tool code that will request services for the environment types.

The abstraction mechanism and information hiding through
packaging and specification are important for object management. Since the
environment types are well-abstracted data, the host language must provide
such a capability. Compatibility of the abstraction capability between the
environment type definition language and the host language must be
resolved by a powerful abstraction mechanism of the host language. Ada
provides such a capability well.
6.2.2.2 Host Environment
To implement environment objects as shared and autonomous objects that
support the object-oriented paradigm and maintain entity-relation capability,
the host environment needs to be compatible with both object-oriented and
entity-relation modeling capability. Concurrency support, shared memory
support, and interprocess communication support are basic requirements for
providing compatibility with environment type processing.

The host environment must support concurrent process management,
which provides poriable interfaces to manage process handling. Since the
environment objects are concurrent entities, the management of those
concurrent objects with necessary portability must be compatible to the host
environment. The Ada environment, which is equipped with only task-
level process management, cannot provide the dynamic process management
required in the environment type management system. If the host

environment cannot support a portable set of interfaces for process

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

120
management, the environment type management system cannot be
compatible with the various host environments.

The node model that constructs the environment type structure is an
important mechanism that provides dynamic object management with the
necessary entity-relation capability. The node model is a shared data structure
in the environment type management system. The persistency of such a
structure must be supported in the host environment, which provides the set
of interfaces to access to the node model in shared memory. Such shared
memory management must be supported in lower levels of the software
engineering environment layer, such as the virtual operating system or
environment support layer of Figure 2.3.

The message-handling that is independent of the language support
environment must be implemented through a separate mechanism such as
tool data manager. The actual message is sent through an interprocess
communication mechanism. The host environment must be compatible to
provide such capability.

The host environment must be equipped with a portable set of
interfaces to manage process management, node modeling, entity-relation
modeling, shared memory, and interprocess communication. Portability is
an important aspect of the compatibility issue because software environment
objects must be transportable among different host environments in different
machines.

6.3 Software Quality Improvement
Environment types are the reusable software components that provide well-
defined structures for and behavior of environment tool data objects; in

essence, they categorize the environment tool data. Tool data instantiated

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

121
from environment types serve as autonomous servers to integrate various
tools. Tool data defined in a software program possess the necessary data
structures as well as the well-defined code to operate them. Such tool data in
a conventional environment are actually part of the software program.

Although the quality of the software is difficult to measure, it is
possible to analyze the factors that increase quality. With this in mind, we
maintain that the typed software engineering environment improves the
quality of the software developed in such an environment. For one thing,
the restriction imposed by the typing mechanism in defining and using the
environment type results in less variation in the manipulation of tool data.
Also, reusability of environment types increases the reliability of the reused
software component, which in the typed software engineering environment
is tool data. Less diversified and more specialized roles for the software
design process enhance the quality. Quality improvement of the software
developed in the typed software engineering environment is analyzed in this
section with regard to specialization of development activity, reusability, and
reliability.

6.3.1 Specialization of Development Activity

Before using of the environment types in software development, the software
developer must be well aware of the design of the interfaces to the tool data as
well as the informal protocols among related tools that use the tool data. The
developers of such tools must share the same information and knowledge to
use the tool data correctly. As tools are often not developed in the same
group of a project, incomplete information about their use can result in their
misuse. The developer must devote his efforts to understanding and writing

consistent code so that tool data can be correctly manipulated.

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com

122

Once the environment types for the tool data are used, the software
developers can use the interfaces to manipulate tool data correctly by
automated support of the environment types and concentrate their expertise
in software development while maintaining correct use of the tool data. The
software developer who is expert in a certain area of the development can
improve the quality of the software without being distracted by the usual
problems with the tool data interfaces.
6.3.2 Reusability
The software developer can use reusable software components in software
when those components are available and accessible. To be reusable, the
components must be abstracted well and be available. The inhibiting factors of
the reusability include the difficulties in representing them, the language
dependency, the accessibility when necessary, and the heterogeneous design
or implementation methodology. A special mechanism is necessary to
support a practical reusability. [Biggerstaff and Richter 1987; Agresti and
McGarry 1988; Tracz 1987]. A supporting metrics analysis is presented in
Appendix B.

The environment types are reusable and well abstracted as
autonomous objects. The tight coupling of the itool data with their
interpretation through defined operations makes the tool data reusable in
development of related tools. The environment types are in factored form to
provide parameterized interfaces that support reusability. The environment
types are language independent to provide portable interfaces. Uniform
management of the tool data instantiated from environment types supports

reusability. Such a dynamic environment type evolution enables gradual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

123
development of the environment types with a controlled degree of
abstraction.

The environment types are developed through thorough study of the
function and use of the types for various potential users. Once they are
catalogued, the environment types provide consistent services to the tool
using the tool data. The services provided by the environment types are
reliable and of good quality. Reusability of environment types provides the
well-understood methods to manage such tool data so that the software
developer can concentrate efforts on other parts of the development. These
practical supports for reusability enhance the quality of resulting software.
The accessibility to the reusable software motivates developers to use them.
6.3.3 Reliability
Because the environment types must be reliable, they are developed and
catalogued with extensive testing. When reliable operations of the
environment types for the tool data are used, the tool itself can be more
reliable in the interfaces to the tool data. The possible errors caused by the
mis-handling of the tool data are avoided systematically. Overall reliability of
the resulting software is increased when the software developer uses more
environment types in the sofiware developmeni. The reliability
improvement contributes to the quality of the resulting software.

The environment types catalogued in the software engineering
environment provide a set of standardized services for tool-data
manipulation. Standardization of the interfaces provides fewer errors in the
design phase and enhances the reliability of the software so that the quality of

the software is improved.

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanw.manaraa.com

124

By using well-understood environment types, the software developer
can manage the developing software well. Improvements in manageability
of the software resources under development result in more reliable software.
64 Improvement in Productivity
The productivity is defined as the ratio of outputs produced to inputs
consumed by software development activity [Boehm 1987]. We use inputs as
the costs consumed in the software development phases of objective
softwares. The cost involving management of environment types in the
software engineering environment can be assumed relatively constant for the
software project when a rich set of environment types are established.

Using typing mechanisms for tool data in the software engineering
environment can improve the productivity of the software primarily by
reducing costs during software development. Using environment types, the
software developer can use tools more efficiently by integrating them better.
The objective software includes well-defined environment types and can
manage the tool data with smaller size software. The design process of the
software becomes easier because good tools can be selected more easily for that
specific purpose. Standardization and consistency of tool data management
reduce testing efforts for the tool data interfaces. Improved reusability
provides better productivity. Maintenance costs for the developed software
can be less because of less variation in the software components involved.

Productivity improvement by using environment types in software
development is analyzed below with regard to automation in software
development, consistency, and cost. The analysis includes the efforts related
to static analysis, dynamic analysis, and management viewpoint for the

productivity as well.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

125

6.4.1 Automation
Tools for software development can be integrated more easily by using
appropriate environment types available. The software developer can use
more tools for his software development activity by such tool integration.
This enables more automation of the software engineering environment.
Productivity can be increased by using more automated tools with improved
integration of tools.
64.2 Consistency
The software developer can manage tool data in a consistent way by using
operatidns defined in the environment types. More restrictions are imposed
on tool data manipulation by such operations and, therefore, less flexibility is
allowed. The software developer uses only a standard set of interfaces to
manipulate tool data. This standardization enhances the consistent
management of tool data eamong tools using them, which is important to
reduce any potential errors at early stages of the development.
643 Cost
The software using environment types is not required to define the code to
manipulate tool data; in fact, it becomes smaller in size. There are only two
pieces of code in the deveioping software: one to send messages to request
services to manage tool data, and a second to define its own specific functions.
The usual interface code for the various tool data is eliminated to reduce the
size of the software.

Smaller size for the software requires less work for design and coding.
Moreover, the testing effort for a smaller size of software can be less costly.

Productivity of the software development that uses more well-defined

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanw.manaraa.com

126
environment types can be increased if the software engineering environment
provides a rich set of environment types for a variety of uses.

6.4.4 Static Analysis Effort

Static analysis efforts in the software development examines the effect of
software development regardless of executability. It includes statistical
profiling, cost and resource estimation, and design process.

The statistics on the use of environment types can be profiled to
analyze and improve the quality of the environment types. By improving
the efficiency of the popular environment types and introducing more
appropriate environment types, productivity of the software development
can be increased. The software engineering environment can be more
powerful through this process of environment type evolution.

The cost estimation and resource estimation can be more visible
because more reusable environment types for the software are available in
the software engineering environment.

The design process becomes more standardized because several
reusable environment types can be assembled for routine functions. Also the
software programs become smaller in size if more reusable environment
types are integrated.

The gains outlined in the above static analysis contribute to the
productivity of the software development in the software engineering
environment.

6.4.5 Dynamic Analysis Effort
The dynamic analysis effort for the software development examines the
software development during and after execution of the software developed.

" The development activities of the software are more convenient if the-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

127
software engineering environment provides a rich set of reusable
environment types. Simulation of the software is feasible at an early stage of
the design. The tracing or debugging of the embedded errors in the software
can be easier because the interfaces to the tool data are more reliable, and the
coverage for the testing can be narrower. Tools used for the development of
the software can use the tool data more reliably.

6.4.6 Management Viewpoint

The configuration management can be improved by the relation structure of
the environment types. Relation description of the environment types
enforces the existence of certain objects linked to the relation upon
instantiation of tool data. This mechanism helps the configuration
management become more automated.

Information management for the software components can be
improved with the relation structure also. Necessary documentation can be
enforced by defining such environment types with a mandatory relation field
to have the documentation type.

When various environment types for the data dictionary,

documentation, code object, specification, and test data are supplied in the

manageable in more consistent and automated way.

The improvement in productivity estimated in this section can be
critical when the software development cycle is short. The initial cost to
accumulate well-designed environment types and collect powerful tools can
be high, and the execution time of the typed software engineering
environment system can be slower. However, the quality of the resulting

software and the gain in productivity can easily compensate for the initial

e Yo b o 4 e S50 s bme et s i A e e st e 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

128
cost. The parameterization of the abstraction mechanism for the
environment type is crucial to provide a good, reusable software component.
Dynamic environment type evolution is necessary to enable the software

engineering environment to be self-evolving and constantly improving.

er. Further reproduction prohibited without permissionyzww.manaraa.com

7. CONCLUSION

A software engineering environment is a well-incorporated system to
provide economical software development with a rich set of tools and
supporting methodologies. The characteristics of software engineering
environments reveal many essential requirements. The architectural view
for the software engineering environment system provides a hierarchical
structure of layers where the functions and the roles of each subcomponent
are placed. Accordingly the roles of software developers are categorized for
various activities and phases in the software development life-cycle.

To model the tools and tool data with modularity, good abstraction,
and information hiding, the object-oriented development paradigm is
summarized, with emphasis placed on autonomous and persistent
requirements for the software tool data in software engineering
environments.

The typing mechanism for the software engineering tool data utilizing
explicit polymorphic types supports good integration of tools in the software
engineering environment. A software engineering environment equipped
with such a typing mechanism enhances the quality of the software system
and the productivity of the software development process. An environment
type processing language that defines and manipulates environment types
can robustly model real-world software data with the object-oriented
paradigm. The entity management system embedded in this typing system
provides the entity-relation model that is essential in many software
practices.

The environment type management system provides necessary

services for several subsystems such as the environment type definition

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

130
processor and the tool compiler. This type management system is equipped
with the independent subsystem of the environment type library manager
and tool data manager that services requests from various sources in the
software engineering environment.

The design of such a typing mechanism in a software engineering
environment identifies necessary subsystems with their required functions as
well as the relationships among them.

The analysis of the typing mechanism from the viewpoint of the use of
a typed software engineering environment, the implementation of the
system, and quality and productivity improvements in software
development, is also presented.

71 Contributions
In this research, the typing mechanism for the software engineering tool data
is believed to provide the following benefits:

1) efficient management of tool integration in the software engineering
environment,

2) maximum reusability of code to manipulate the tool data which
provides consistent and standardized services,

3) affordable and manageable representation of software tool data for the
various software resources,

4) practical support for object-oriented development of software systems
with concurrency, autonomous objects, language-independency, and
dynamic type evolution,

5) increased quality and productivity in software development process
through reusability, consistency, cost-savings, and better tool

manageability.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

131
72 Further Research
The prototype system implementing the typing mechanism in the CAIS
environment is near completion. The environment type definition processor
is working in the CAIS at this point. A robust system for the software
engineering environment typing mechanism currently remains for further
work. Upon completion of the implementation of the type system, a more
objective measurement must be investigated with the criteria given in
Chapter 6.

Dynamic type modification for environment types in software
engineering environments is needed as type evolution continues. Necessary
underlying mechanisms for type modification and generalization is a topic
for further research. The transaction mechanism and triggering mechanism

are also the future research topics.

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanw.manaraa.com

REFERENCES

Aho, A., and Ullman, J. 1979. Principles of Compiler Design, Addison-Wesley,
Readings, Massachusetts.

Agresti, W., and McGarry, F. 1988. The Minnowbrook workshop on software
reuse: A summary report. IEEE Tutorial on Software Reuse: Emerging
Technology by W. Tracz, IEEE.

Archer, J. Jr., and Devlin, M. 1986. Rational's experience using Ada for very
large systems. In Proceedings on First International Conference in Ada
programming Language Applications for the NASA Space Station
(NASA), pp.B2.5.1-B.2.5.12.

Barnes, B., Durek,T., Gaffney, J., and Pyster, A. 1987. A framework and
economic foundation for software reuse. In Proceedings of Workshop
on Software Reusability and Maintainability (Oct.).

Basili, V., Barley, J., Joo, B., and Rombach, H. 1987. Software reuse: A
framework. Minnowbrook Workshop on Software Reuse.

Basili, V., and Rombach, H. 1988. The TAME project: Towards improvement-
oriented software environments. IEEE Transactions on Software
Engineering, vol. 14, no. 6 (June).

Bassett, P. 1987. Frame-based software engineering. IEEE Software, vol. 4, no. 4
(July).

Beacker, R. 1988. Enhancing program readability and comprehensibility with
tools for program visualization. In Proceedings of 10th International

Conference on Software Engineering (Singapore, Apr.).

Biggerstaff, T., and Righter, C. 1987. Reusability framework, assessment, and
directions. IEEE Software (July), pp.41-49.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

133
Boehm, B. 1981. Software Engineering Economics, Prentice-Hall, Inc.,
Englewood Cliffs, NJ.

Boehm, B. 1987. Improving software productivity. IEEE Computer, vol. 20, no.
9 (Sept).

Booch, G. 1983. Software Engineering with Ada. Benjamin/Cummings.

Booch, G. 1986. Object-oriented development. IEEE Transactions on Software
Engineering, vol. SE-12, no. 2 (Feb.).

Buhr. R. J. A. 1984. System Design with Ada. Prentice-Hall, Inc., Englewood
Cliffs, NJ.

Burton, B., Aragon, R, Bailey, S., Koehler, K., and Mayes, L. 1987. The
reusable software library. IEEE Software, vol. 4, no. 4 (July).

Buxton, J. 1980. Requirements for Ada Programming Support Environments,
STONEMAN, U.S. Dep. Defense (Feb.).

Buzzard, G., and Mudge, T. 1985. Project-based computing and the Ada
programming language. IEEE Computer, vol. 18, no. 3 (Mar.).

CAIS 1986. Military Standard Common Ada Programming Support
Environment (APSE) Interface Set (CAIS), DOD-STD-1838, Washington
D.C.: U.S. Dep. Defense (Oct.).

Cardelli, L., and Wegner, P. 1985. On understanding types, data abstraction,
and polymorphism. ACM Computing Surveys, vol. 17, no. 4 (Dec.).

Cheatham, T. Jr., 1984. Reusability through program transformations. IEEE
Transactions on Software Engineering, vol. SE-10, no. 5 (Sept.).

Chikofsky, E. 1988. Software technology people can really use. IEEE, Software,
vol. 5, no. 2 (Mar.). .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

134

Chikofsky, E., and Rubenstein, B. 1988. CASE: Reliability engineering for
information systems. IEEE Software, vol. 5, no. 2 (Mar.).

Cox, B. 1984. Message/Object Programming: An evolutionary change in
programming technology. IEEE Software, vol. 1, no. 1 (Jan.).

Cox, B. 1986. Object Oriented Programming, an Evolutionary Approach,
Addison-Wesley, Reading, Massachusetts.

Dart, S., Ellison, R., Feiler, P., and Habermann, A. 1987. Software
Development Environments. IEEE Computer, vol. 20, no. 11 (Nov.).

DEC (Digital Equipment Corporation) 1984. User's Introduction to VAX
DEC/CMS, Digital Equipment Corp., Maynard, Mass.

DoD (U.S. Department of Defense) 1983. Reference manual for the Ada®
programming language, ANSI/MIL-STD-1815A. Washington D.C.:
Department of Defense (Jan.).

ESPRIT (European Strategic Program for Research and Development in
Information Technology) 1986. PCTE: A basis for a portable common
tool environment, in Functional Specifications. 4th ed., vol. 1,
Commission of European Community.

Goguen, J. 1984. Parameterized programming. IEEE Transactions on Software
Engineering, vol. SE-10, no. 5 (Sept.).

Goguen, J., and Moriconi, M. 1987. Formalization in programming
environments. IEEE Computer, vol. 20, no. 11 (Nov.).

Goldberg, A. 1980. Smalltalk-80: The Interactive Programming Environment.
Addison-Wesley.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

135
Goldberg, A., and Robson, D. 1983. Smalltalk-80: The Language and Its
Implementation. Addison-Wesley.

Habermann, A., and Notkin, D. 1986. Gandalf: Software development
environments. IEEE Transactions on Software Engineering, vol. SE-12,
no. 12 (Dec.).

Hailpern, B., and Nguyen, V. 1987. A model for object-based inheritance. In
Research Directions in Object-Oriented Programming, Eds. Shriver and
Wegner, MIT Press, Cambridge, MA.

Halbert, D., and O'Brien, P. 1987. Using types and inheritance in object-
oriented programming. IEEE Software, vol. 4, no. 5 (Sept.).

Hantler, S., and King, J. 1976. An introduction to proving the correctness of
programs. ACM Computing Surveys (Sept.), pp. 331-353.

Houghton, R. C. Jr. 1987. Characteristics and functions of software engineering
environment: An overview. ACM SIGSOFT Software Engineering
Notes, vol. 12, no. 1 (Jan.).

Hudson, S., and King, R. 1988. The Cactis project: database support for
software environment. IEEE Transactions on Software Engineering,
vol. 14, no. 6 (June).

IEEE 1983. An American National Standard: IEEE Standard Glossary of
Software Engineering Terminology, IEEE, NY

Kaiser, G., and Garlan, D. 1987. Melding software systems from reusable
building blocks. IEEE Software, vol. 4, no. 4 (July).

Kernighan, B., and Mashey, J. 1981. The UNIX programming environment.
IEEE Computer (Apr.), pp.12-24.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

136
Kim, W., Banerjee, J., Chou, H., Garza, J., and Woelk, D. 1987. Composite
object support in an object-oriented database system. In Proceedings of
ACM Conference on Object-Oriented Programming Systems,
Languages and Applications (Orlando, FL, Oct.).

Kramer, J., Oberndorf, P. Long, J., Robinson, R., Roby, C., Chludzinski, J., and
Clouse, J. 1985. The CAIS Reader's Guide. IDA Memorandum Report
M-150. Institute for Defense Analyses (Dec.).

Lamsweerde, A., Delcourt, B., Delor, E., Shayes, M., and Champagne, R. 1988.
Generic lifecycle support in the ALMA environment. IEEE
Transactions on Software Engineering, vol. 14, no. 6 (June).

Lenz, M., Schmid, H., and Wolf, P. 1987. Software reuse through building
block. IEEE Software, vol. 4, no. 4 (July).

Levine, D. 1988. Toward the production and application of an environmental
type definition processor. Master's Thesis, Arizona State University
(May).

Lieberherr, K., and Riel, A. 1988. Demeter: A case study of software growth
through parameterized classes. In Proceedings of 10th International
Conference on Software Engineering (Singapore, Apr.).

Lindquist, T. 1988. Lecture Notes from CSC 591: Fundamentals of Software
Engineering Environments. Class Notes of Computer Science Course
CSC 591, Arizona State University.

Lindquist, T., and Jenkins, J. 1988. Test-case generation with IOGen. IEEE
Software, vol. 5,no. 1 (Jan.). .

Lindquist, T., Lawlis, P., and Levine, D. 1987. Typing information in a
software engineering environment. In Proceedings of Sixth
International Conference on Entity Relationship Approach (New York,
NY, Nov. 11-13), pp.165-179.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

137

Martin, C. 1988. Second-generation CASE tools: A challenge to vendors. IEEE
Software, vol. 5, no. 2 (Mar.).

Meyer, B. 1986. Genericity versus inheritance. In Proceedings of OOPSLA'86,
special edition of SIGPLAN Notices, vol. 21, no. 11, ACM (Nov.).

Meyer, B. 1987. Reusability: the Case for object-oriented design. IEEE Software
(Mar.), pp.50-64

Meyers, G. 1979. The Art of Software Testing, John Wiley & Sons.

Meyers, R., and Parrish, J. 1988. The Macintosh Programmer's Workshop.
IEEE Software, vol. 5, no. 3 (May).

Miiller, H., and Klashinsky, K. 1988. Rigi - A system for programming-in-the-
large. In Proceedings of 10th International Conference on Software
Engineering (Singapore, Apr.).

Narayanaswamy, K. 1988. Static Analysis-based program evolution support in
the Common LISP framework, In Proceedings of 10th International
Conference on Software Engineering (Singapore, Apr.).

Neck, L., and Perkins, T. 1983. A survey of software engineering practice:
tools, methods, and results. IEEE Transactions on Software
Engineering, vol. SE-9, no. 5 (Sept.).

Notkin, D., and Griswold, W. 1988. extension and software development. In
Proceedings of 10th International Conference on Software Engineering
(Singapore, Apr.).

Oberndorf, P. 1985. KAPSE Interface Team Public Report:Technical Document

552. vol. 5, Ada Joint Program Office (AJPO), Naval Ocean Systems
Center (Aug.).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

138
Oberndorf, P. 1988. The Common Ada programming Support Environment
(APSE) Interface Set (CAIS). IEEE Transactions on Software
Engineering, vol. 14, no. 6 (June).

Parnas, D. 1972. On the criteria to be used in decomposing systems into
modules. Communications of the ACM (Dec.).

Penedo, M., and Riddle, W. 1988. Software engineering environment
architecture. IEEE Transactions on Software Engineering, vol. 14, no. 6
(June).

Penney, D. and Stein, J. 1987. Class modification in the Gemstone object-
oriented DBMS. In Proceedings of ACM Conference on Object-Oriented
Programming Systems, Languages and Applications (Orlando, FL, Oct.).

Perry, D., and Kaiser, G. 1988. Models of software development
environments. In Proceedings of 10th International Conference on
Software Engineering (Singapore, Apr.).

Pressman, R. 1987. Software Engineering: a Practitioner's Approach. second
edition, McGraw-Hill.

Prieto-Diaz, R., and Freeman, P. 1987. Classifying software for reusability. IEEE
Software, vol. 4, no. 1 (Jan.).

Ramanathan, J., and Sarkar, S. 1988. Providing customized assistance for
software lifecycle approaches. IEEE Transactions on Software
Engineering, vol. 14, no. 6 (June).

Reiss, S., 1985. Program development systems that support multiple views.
IEEE Transactions on Software Engineering, vol. SE-11, no. 3 (Mar.).

Rich, C., and Waters, R. 1988. Automatic programming: myths and prospects.
IEEE Computer, vol. 21, no. 8 (Aug.).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

139
Robson, D. 1981. Object-oriented software systems. Byte, vol. 6, no. 8 (Aug.).

Rosenblum, D. 1985. A methodology for the design of Ada transformation
tools in a DIANA environment. IEEE Software, vol. 2, no. 2 (Mar.).

Seidewitz, E. 1987. Object-oriented programming in Smalltalk and Ada. In
Proceedings of OOPSLA'87, special edition of SIGPLAN Notices, vol.
22, no. 12, ACM (Dec.).

Steele, G. Jr. 1983. Common Lisp-The Language. Digital Press, Burlington,
MA.

Swinehart, D., Zellweger, P., and Hagmann, R. 1985. The structure of Cedar, In
Proceedings on ACM SIGPlan Symposium of Language Issues in
Programming Environments, SIGPlan Notices (July).

Taylor, R., Osterweil, L., Wileden, L., and Young, J. 1986. Arcadia: A software
development environment research project. In Proceedings of the IEEE
Computer Society Second International Conference on Ada
Applications and Environments.

Taylor, R., and Standish, T. 1985. Steps to an advanced Ada programming
environment. IEEE Transactions on Software Engineering, vol. SE-11,
no. 3 (Mar.).

Teitelbaum, W., Reps, T., and Horwitz, S. 1981. The Cornell Program
Synthesizer: A syntax-directed programming environment.
Communications of ACM, vol. 25, no. 9 (Sept.).

Teitelman, W. 1984. A tour Cedar. IEEE Software, vol. 1, no. 2 (Apr.).

Teitelman, W. 1985. A tour through Cedar. IEEE Transactions on Software
Engineering, vol. SE-11, no. 3 (Mar.).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

140
Tracz, W. 1987a. Ada reusability efforts: A survey of the state of practice. In
Proceedings of the Fifth Annual Joint Conference on Ada Technology
and Washington Ada Symposium, pp.35-44

Tracz, W. 1987b. Reusability comes of age. IEEE Software, vol. 4, no. 4 (July).

Tracz. W. 1987c. Software reuse: Motivators and inhibitors. In Proceedings of
COMPCON 5°87, pp-358-363

Tracz, W. 1988. Software reuse myths. ACM SIGSOFT Software Engineering
Notes, vol.13, no.1 (Jan.), pp.17-21.

Urban, J. and Fisher, D. 1985. Ada environments and tools. IEEE Software,
vol. 2, no. 2 (Mar.).

Vines, D., and King, T. 1988. Gaia: An object-oriented framework for an Ada
environment. In Proceedings of the 3rd International IEEE Conference
on Ada Applications and Environments (Manchester, NH, May).

Voelcker. J. 1988. Automating software. IEEE Spectrum, vol. 25, no. 7 (July).

Walker, J. 1988. Supporting document development with Concordia. IEEE
Computer, vol. 21, no. 1 (Jan).

Wegner, P. 1987a. Dimensions of object-oriented language design. In
Proceedings of ACM Conference on Object-Oriented Programming
Systems, Languages and Applications (Orlando, FL, Oct.).

Wegner, P. 1987b. The object-oriented classification paradigm. In Research
Directions in Object-Oriented Programming, Eds. Shriver and Wegner,
MIT Press, Cambridge, MA.

Wolf, A., Clarke, L., and Wileden, J. 1985. Ada-based support for
programming-in-the-large. IEEE Software, vol. 2, no. 2 (Mar.).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

141
Woodfield, S., Embley, D., and Scott, D. 1987. Can programmers reuse
software?. IEEE Software, vol. 4, no. 4 (July).

Yankelovich, N., Haan, B., Meyrowitz, N., and Drucker, S. 1988. Intermedia:
The concept and the construction of seamless information
environment, IEEE Computer, vol. 21, no. 1 (Jan.).

Young, M., Taylor, R., and Troup, D. 1988. Software environment
architectures and user Interface facilities. IEEE Transactions on
Software Engineering, vol. 14, no. 6 (June).

Young, M., Taylor, R,, Troup, D., and Kelly, C. 1988. Design principles behind
Chiron: A UIMS for Software Environments. In Proceedings of 10th
International Conference on Software Engineering (Singapore, Apr.).

TR e e e e e e et v e T < e Aent— - 2 . 4 e 0 o —

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

APPENDIX A
Environment Type Definitions for the Software Testing

Environment

er. Further reproduction prohibited without permissionyaw\w.manaraa.com

143
=- File <Symbol table Env.ENV> contains declaration for SYMBOL TABLE

with SKELETON AND_ CODE_CELLS,CAIS_LIST DEFINITIONS;:
include STRUCTURAT, , NODES;
nests
environmenc type PROGRAM SKELETON specializes STRUCTURAL , NODES
with
contents
DECLARATION LIST : CAIS_LIST TYPE;
relations
CONTAINS to PROGRAM SKELETON,
INSTRUCTIONS to CODE_CELLS cardinality =
end PROGRAM SKELETON;

environment type CODE_CELL specializes STRUCTURAL ,_ NODES
with
contents
CODE : CAIS_LIST TYPE;
relations
TEXT_ORDER to CODE_CELL cardinality = 0..1;
end CODE CELL
end nests:;

environment type SYMBOL TABLE specializes STRUCTURAL ._NODES
with
contents
PROGRAM TREE : PROGRAM 1 SKELETON,
INTERMEDIATE CODE : CODE_CELL;
relations
COMPILED FROM to ADA . SOURCE predefined cardinality=1,
EXECUTABLE . IMAGE to ADA . IMAGE predefined cardinality=1;
operation
procedure ADD SYMBOL (SYMBOL: IDENTIFIER);:
procedure ADD | _PROG_UNIT CONTOUR (SYMBOL : IDENTIFIER):
procedure ADD (CODE CELL (CODE : CAIS_LIST TYPE):
procedure FIND _SYMBOL (SYMBOL : IDENTIFIER);
end SYMBOL TABLE;

-- File <Program_Env.ENV> contains the declaration for PROGRAM ENV

with CAIS_LIST DEFINITIONS;
include SYMBOL » TABLE, SOURCE_PROGRAM;

nests
environment type SYNTAX TREE_ENV
with

contents
PARSE TREE : CAIS_LIST TYPE;

attributes
SIZE : INTEGER:

relations

SYMBOL_IABLE_QF to SYMBOL TABLE
cardinality = 1;
operation
procedure INSERT SYMBOL (PARSED LIST : CAIS_LIST TYPE);
function GET SYMBOL return CAIS LIST TYPE;
end SYNTAX TREE_ENV;

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanw.manaraa.com

144

end nests;

environment type PROGRAM { ENV

with
contents
SYMBOL_TAB : SYMBOL TABLE,
SYNTAX TREE : SYNTAX TREE_ENV;
attributes
CREATOR : CREATOR NAME,
CREATION DATE : TIME, -- set by OPEN PROGRAM 1 SKELETON
UPDATE_DATE : TIME, -- updated by any subsequent
—=- change
SIZE : INTEGER; ~- set by last change
relations
COMPILED_FROM to SOURCE_PROGRAM
with attribute
COMPILER : COMPILER_TYPE,
COMPILATION DATE : TIME
cardinality=0..1 primary -- allow 0 cardinality for
-- TEST_PROGRAM
operation

procedure SET_PROGRAM SKELETON (CREATOR : CREATOR NAME;
SOURCE_PROG : SOURCE_PROGRAM
COMPILER : COMPILER TYPE;
COMPILATION_DATE : TIME);

for ADD SYMBOL use

procedure INSERT_TOKEN (TOKEN : TOKEN TYPE;

ID KIND : ID _TYPE) ;

procedure DELETE_TOKEN (TOKEN : TOKEN | TYPE;
ID KIND : ID TYPE),

function IS_TOKEN (TOKEN : TOKEN TYPE) return BOOLEAN;

procedure GET _NEXT TOKEN (TOKEN : out TOKEN TYPE;
ID KIND : out ID TYPE),

function COMPILER return SOURCE PROGRAM

function COMPILATION DATE return TIME;

function CREATOR return CREATOR NAME;

function CREATION DATE return TIME;

function UPDATE DATE return TIME;

end PROGRAM _ENV;

-- FILE <SOURCE ENV.ENV> contains the declaration for SOURCE ENV

includes PROGRAM ENV, SPECIFICATION:
environment type SOURCE_ENV specializes PROGRAM ENV

with
relations
SPEC_OF to SPECIFICATION
with attribute SPEC_KIND : SPEC_TYPE
cardinality = 1,
TEST_OBJ_OF to TEST OBJECTIVE cardinality = 1..MAX ._TEST OBJ,
TEST | " PROGRAM 1 OF to TEST ' PROGRAM cardinality =
1..MAX TEST_PROG;
operation

procedure LINK TEST ' OBJ (TEST OBJ : TEST ' OBJECTIVE) ;
-- allows incremental definition of env type
—— TEST_OBJECTIVE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

145

procedure LINK TEST " PROG (TEST_PROG: TEST_PROGRAM) ;
end SOURCE_ENV;

with CAIS LIST DEFINITIONS;
includes SOURCE . ENV, TEST OBJECTIVE;
environment type SPECIFICATION

with
contents
SPEC_CONTENT : CAIS LIST TYPE;
attributes
NUMBER OF ITEM : INTEGER,
CREATOR ¢ CREATOR NAME,
CREATION DATE : TIME,
UPDATE_DATE : TIME,
SIZE : INTEGER;
relations

PROGRAM OF to SOURCE_ENV cardinality=1..MAX . PROG,
TEST OBJ OF to TEST OBJECTIVE cardinality = 1..MAX ._TEST_OBJ;
operation
procedure SET SPEC (CREATOR : CREATOR ._NAME) ;
procedure WRITE . SPEC_ITEM (SPEC ITEM : SPEC_ITEM TYPE);
function NEXT SPEC ITEM return SPEC > _ITEM TYPE,
procedure LINK ! __SOURCE (SOURCE : SOURCE ENV),
procedure LINK ._TEST OBJ (TEST_OBJ : TEST * OBJECTIVE) ;
procedure DELETE SPEC,
end SPECIFICATION;

with CAIS_LIST DEFINITIONS;
includes SOURCE , ENV, SPECIFICATION, TEST '_PROGRAM, TEST DATA . ENV;
environment type TEST OBJECTIVE

with

contents
TEST_OBJ_TUPLE : CAIS ,_LIST TYPE;

attributes
CREATION DATE : TIME,
SIZE : INTEGER;

relations
SOURCE_OF to SOURCE_ENV cardinality = 1 primary,
SPEC_¢ OF to SPECIFICATION cardinality = 1 primary,
TEST | " PROGRAM OF to TEST ' PROGRAM cardinality =

1..MAX TEST PROG,
operation

procedure SET TEST OBJECTIVE . TEMPLATE
(SOURCE : SOURCE ,_ENV;
SPEC : SPECIFICATION);
procedure INSERT ' TEST > OBJ (TEST OBJ CASE : CAIS _LIST ' TYPE) ;
procedure DELETE TEST ' OBJ (TEST OBJ ¢ _ CASE : CAIS LIST ' TYPE) ;
function GET TEST OBJ return CAIS LIST ' TYPE;
procedure LINK TEST " PROG (TEST] PROG : TEST ' PROGRAM) ;
end TEST OBJECTIVE;

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com

146

includes PROGRAM ENV, SOURCE ,_ENV, SPECIFICATION, TEST OBJECTIVE,
TEST_DATA;

environment type TEST " PROGRAM ENV specialize PROGRAM ENV
with
relations
PROGRAM OF to SOURCE_ENV cardinality=1 primary,
TEST OBJ OF to TEST OBJECTIVE cardinality=1,
TEST | DATA . OF to TEST ' DATA cardinality—l..MAX TEST_DATA;
operation
procedure SET_TEST PROGRAM (SOURCE : SOURCE_ENV;
SPEC : SPECIFICATION;
TEST_OBJ : TEST OBJECTIVE);
procedure LINK TEST " DATA (TEST] DATA : TEST ' DATA ENV);
end TEST_PROGRAM;

with CAIS LIST DEFINITIONS;

includes SOURCE . _ENV, SPECIFICATION, TEST_OBJECTIVE, TEST PROGRAM;
environment type TEST ' DATA ENV

with

contents
TEST_DATA LIST : CAIS LIST TYPE;

attributes
CREATOR : CREATOR NAME,
CREATION DATE : TIME,
SIZE : INTEGER:

relations
PROGRAM OF to SOURCE_ENV cardinality=1 primary,
SPEC_(OF to SPECIFICATION cardinality=1 primary,
TEST (' OBJ_OF to TEST OBJECTIVE cardinality=1,
TEST_PROGRAM { OF to TEST ' PROGRAM

cardinality—l..me TEST_PROGRAM;
operation

procedure SET TEST DATA (SPEC : SPECIFICATION;:
SOURCE : SOURCE_ENV;
TEST_OBJ : TEST (' OBJECTIVE:
TEST | ' PROG : TEST *_PROGRAM) ;
function GET_NEXT ' TEST _DATA CnSE return CAIS LIST TYPE;
procedure INSERT TEST DATA;QASE
(TEST_] DATA , LIST : CAIS LIST TYPE);
procedure DELETE TEST " DATA CASE
(TEST] DATA LIST : CAIS LIST TYPE):
procedure CLOSE TEST ' DATA;
end TEST DATA ENV;

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanw.manaraa.com

APPENDIX B
Metric Formulation for the Reusability

v ettt ©

er. Further reproduction prohibited without permissionyaw\w.manaraa.com

148
Reusable software components can contribute to enhancing productivity and
quality, while reducing the cost of software development. To enhance
reusability, the developer is urged to: use parameterization for the existing
programming, set up the library to maintain the reusable components, and
use object-oriented design methodology.

The developer needs to use correct parameters required by the reusable
components. These interfaces were not yet created thought in conventional
development, where the developer creates necessary subfunctions according
to the requirements of the program design. However, to use reusable
components, the developer must match the correct parameters. Further, the
developer must create new software modules that are potentially reusable by
others, which must be well defined and highly parameterized. To achieve
this, the library for a specific problem domain must be set up and maintained
properly.

The new software development for reusability will employ the top-
down approach for high-level design, while the detailed design ideas can be
formulated by composing reusable software in a bottom-up fashion. The
object-oriented design methodologies must be introduced to the developer at
some point to greatly optimize the development activity.

In the new development paradigm that employs reusability, the design
process will include:

1) search activities for possibly reusable components for specific purposes,
2) the creation of new reusable components, or

3) the design of functions in conventional way.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

149
Correlations of the Factors in Reusability
We wish to isolate various factors involving reusability in software
development and find correlations among them. Once a simple metric is
formulated, it will be easy to find the contributing factors for more productive
software development. To design a simple model, we assume that we can
estimate or have the actual cost data for software development cost both
using reusable components and by creating software from scratch. The
discussion presented presented below is based on the economics model by
Barnes and others [Barnes et al. 1987].
We assume that the total cost of developing target software using
reusable components is C', and the total cost of developing target software by

creating from the scratch is C°, The reusable software components in the
library are (R}, R,,..., R,), where actually used reusable components for target

software are (Rl, Ry Rm), O<msr. The target software is composed of (P1'
Py, Pq, Ry Ry Rm). The proportion of (Rl, R,,.., R) in target software by
any measurement criteria ~ probably by LOC (lines of code) - is R%. If we say
the cost of developing (Pl, P,,..., Pq) is Cn, then Cn = (1-R)¢C" since the unit
cost of developing a new part of the target software would be the same as that
from building from scratch. To use the reusable components, we need to
integrate them where the integration cost of (R4, Ry,..., R) into the target
software is B = bsC®, and b is the relative cost for integration to C°. The cost
ratio of developing (le Ryses Rr) for reuse purposes versus non-reuse

purposes is e, and the aggregate average number of uses of Ry, R,,-, R) is n.

The amortized cost for developing reused components originally in the target

(ReC3eg)

software is therefore n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

150
The cost of developing the target software consists of the cost of new

parts, the cost of reused parts, and the cost of integration.

c’ =Cn+ integration cost + cost of reused components
= (1-R)+C® + bec®eR + BeC€)

= COo(I-R+boR + 59 = Coo(1 + Re(b-1+£))
The relative cost of development by reuse to that of creation from

scratch:
RC=S=1+Re0-148)

The productivity of development by reuse to that of creation from

scratch:

S 1
RP=cr= 1+Re(b-1+£)

The break-even number of uses for library : N p=n
when 1 + Re(b-1+£)=1

ioh 3 - £_ £
whichisb=1 +No orNo- 1-5°

Our interests remain in the productivity gain measured as the relative
cost of the reuse paradigm to the non-reuse paradigm. Among the many
arguments in favor of reusability, the relative cost for integrating reusable
software module b and the cost of developing reusable components must be
low enough to pay off initial costs such as library set-up cost.

To get positive productivity (RP>1, which is at least as good as
conventional development), b-1+% < 0 or b<1- ﬁ— requires a sufficiently low
integration cost if there is at least one reused software component (R>0).

Further observation reveals that it is necessary to reach a certain number of

break-even point (N)) when using reusable components to be cost-effective.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

151
To reduce the integrating cost and induce the developer to increase reusability
for the development activities, we need a good mechanism that can support
the creation and management of reusable components in a highly

parameterized and automated manner.

Tt - - a3 i - <a -

er. Further reproduction prohibited without permissionyaw\w.manaraa.com

